90 research outputs found
Comparative chromosome band mapping in primates byin situ suppression hybridization of band specific DNA microlibraries
A DNA-library established from microdissected bands 8q23 to 8q24.1 of normal human chromosomes 8 (Lüdecke et al., 1989) was used as a probe for chromosomal in situ suppression (CISS-) hybridization to metaphase chromosomes of man and primates including Hylobates lar and Macaca fuscata. Comparative band mapping as first applied in this study shows the specific visualization of a single subchromosomal region in all three species and thus demonstrates that synteny of the bulk sequences of a specific human chromosome subregion has been conserved for more than 20 million years
The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary
Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines
Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction
Non-isotopic in situ hybridization of chromosome-specific alphoid DNA probes has become a potent tool in the study of numerical aberrations of specific human chromosomes at all stages of the cell cycle. In this paper, we describe approaches for the rapid generation of such probes using the polymerase chain reaction (PCR), and demonstrate their chromosome specificity by fluorescence in situ hybridization to normal human metaphase spreads and interphase nuclei. Oligonucleotide primers for conserved regions of the alpha satellite monomer were used to generate chromosome-specific DNA probes from somatic hybrid cells containing various human chromosomes, and from DNA libraries from sorted human chromosomes. Oligonucleotide primers for chromosome-specific regions of the alpha satellite monomer were used to generate specific DNA probes for the pericentromeric heterochromatin of human chromosomes 1, 6, 7, 17 and X directly from human genomic DNA
Comparative chromosome painting discloses homologous Segments in distantly related mammals
Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow
sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the
presence of syntenic groups in distantly related mammalian Orders ranging from
primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus
muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These
mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude
that ZOO-FISH can be used to generate comparative chromosome maps of a large
number of mammalian species
Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes
Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements
Integration of Hi-C with short and long-read genome sequencing reveals the structure of germline rearranged genomes
Here the authors characterize structural variations (SVs) in a cohort of individuals with complex genomic rearrangements, identifying breakpoints by employing short- and long-read genome sequencing and investigate their impact on gene expression and the three-dimensional chromatin architecture. They find breakpoints are enriched in inactive regions and can result in chromatin domain fusions.Structural variants are a common cause of disease and contribute to a large extent to inter-individual variability, but their detection and interpretation remain a challenge. Here, we investigate 11 individuals with complex genomic rearrangements including germline chromothripsis by combining short- and long-read genome sequencing (GS) with Hi-C. Large-scale genomic rearrangements are identified in Hi-C interaction maps, allowing for an independent assessment of breakpoint calls derived from the GS methods, resulting in >300 genomic junctions. Based on a comprehensive breakpoint detection and Hi-C, we achieve a reconstruction of whole rearranged chromosomes. Integrating information on the three-dimensional organization of chromatin, we observe that breakpoints occur more frequently than expected in lamina-associated domains (LADs) and that a majority reshuffle topologically associating domains (TADs). By applying phased RNA-seq, we observe an enrichment of genes showing allelic imbalanced expression (AIG) within 100 kb around the breakpoints. Interestingly, the AIGs hit by a breakpoint (19/22) display both up- and downregulation, thereby suggesting different mechanisms at play, such as gene disruption and rearrangements of regulatory information. However, the majority of interpretable genes located 200 kb around a breakpoint do not show significant expression changes. Thus, there is an overall robustness in the genome towards large-scale chromosome rearrangements
Biometric analysis of protein and oil contents of soybean genotypes in different environments
The objective of this work was to identify by biometric analyses the most stable soybean parents, with higher oil or protein contents, cultivated at different seasons and locations of the state of Minas Gerais, Brazil. Forty-nine genotypes were evaluated in the municipalities of Viçosa, Visconde do Rio Branco, and São Gotardo, in the state of Minas Gerais, from 2009 to 2011. Protein and oil contents were analyzed by infrared spectrometry using a FT-NIR analyzer. The effects of genotype, environment, and genotype x environment interaction were significant. The BARC-8 soybean genotype is the best parent to increase protein contents in the progenies, followed by BR 8014887 and CS 3032PTA276-3-4. Selection for high oil content is more efficient when the crossings involve the Suprema, CD 01RR8384, and A7002 genotypes, which show high mean phenotypic values, wide adaptability, and greater stability to environmental variation
True Religion and Hume's Practical Atheism
The argument and discussion in this paper begins from the premise that Hume was an atheist who denied the religious or theist hypothesis. However, even if it is agreed that that Hume was an atheist this does not tell us where he stood on the question concerning the value of religion. Some atheists, such as Spinoza, have argued that society needs to maintain and preserve a form of “true religion”, which is required for the support of our ethical life. Others, such as D’Holbach have argued that religion is not only false it is pernicious and it should be eradicated. This paper argues that Hume rejected both theseproposals, on the ground that they rest, in different ways, on excessively optimistic assumptions. The sensible, practical form of atheism that Hume defends has a more modest and realistic aim, which is simply to restrict and limit the most pernicious forms of religion. Understood this way, Hume’s practical atheism is very different from the forms of “old” atheism associated with Spinoza and D’Holbach, as well as from the “new atheism” of thinkers such as Dawkins and Dennett.
Reprinted in Paul Russell, "Recasting Hume and Early Modern Philosophy: Selected Essays" (New York: Oxford University Press, 2021): 340-383
Divergência em QTLs e variância genética para teores de proteína e óleo em soja
Resumo: O objetivo deste trabalho foi avaliar a relação entre os parâmetros de divergência em regiões de QTLs e a variância genética em genótipos de soja, quanto aos teores de proteína e óleo nos grãos. Dois grupos de genótipos foram avaliados, em diferentes ambientes, quanto aos teores de proteína e óleo e genotipados com marcadores moleculares de regiões de QTLs. A partir de cada grupo, estabeleceram-se subgrupos por critérios pré-definidos e avaliou-se a relação entre os parâmetros, tendo-se comparado a divergência média e a variância genética entre os subgrupos. Os subgrupos foram definidos com base nos critérios de diferença em divergência média, homogeneidade e heterogeneidade nos subgrupos e proximidade em uma projeção tridimensional da matriz de distância. As percentagens de concordância entre maiores valores de divergência média e de variância genética para o total de subgrupos de cada grupo inicial foram de 72,5 e de 73,4%, respectivamente. Portanto, nestes genótipos, há relação positiva entre as estimativas de divergência em regiões de QTL e variância genética para os teores de proteína e de óleo dos grãos. As distâncias genéticas com base nos marcadores moleculares de regiões de QTLs são eficientes para a predição da variabilidade genética em genótipos de soja para os teores de proteína e de óleo dos grãos
- …