67 research outputs found

    No runoff, no soil loss : soil and water conservation in hedgerow barrier systems

    Get PDF
    Land degradation by water erosion represents a serious, and fast increasing, environmental threat. Hedgerow barriers control water erosion through the presence of the tree stem and through an increase in infiltration beneath the hedgerow. The infiltration rate beneath hedgerows is 3-8 times higher than in the alley where crops are grown. Soil water content measurements in hedgerow barrier systems indicate that infiltrated water penetrates the soil beneath hedgerows deeper than the soil beneath the alley and the control. An analytical framework for calculating the impact of hedgerows and mulch on infiltration, runoff and soil loss is presented here. The framework was expanded with algorithms to calculate the impact of hedgerows of various densities, ranging from 1-4 rows. The framework was applied on a seasonal basis and the predictions were satisfactory. Extreme events can be explained when dynamic soil and plant conditions are incorporated. A dynamic simulation model called SHIELD has been developed that explains the experimental observations for runoff, soil loss and crop yields using daily time steps. Application of the model illustrates the importance of dynamic soil and plant conditions to the amount of soil being lost and shows that SHIELD can be used to compute the maximum desired distance between hedgerows with respect to tolerable soil loss

    Simulation of maize growth under conservation farming in tropical environments.

    Get PDF
    This book is written for students and researchers with a keen interest in the quantification of the field soil water balance in tropical environments and the effect of conservation farming on crop production. Part 1 deals with the potential production, i.e. crop growth under ample supply of water nutrients in a pest-, disease- and weed-free environment. Part 2 deals with crop production under rainfed or water-limited conditions by including the crop water balance as well as the soil water balance. Both models use maize as an example. The way the MAIZE models are presented differs from the modular structure of present day models, where separate data blocks for soil, crop and climate are added at the end of a main programme. Here, the explanatory text follows, as closely as possible, the computer listing of the model. Each chapter starts with a number of lines which were copied from the listing. Subsequently, the terminology is justified and the input data and the dimensions of variables are explained. Another special feature is the fact that parameter and function values are defined directly after the line in which they are used for the first time. This method highlights the places where the model needs input from the user. In this way it is stressed that the accuracy of the model depends on the availability and quality of the input data, together with the correct understanding and description of the processes involved. The third part of this book contains a number of application

    Methane dynamics in the subarctic tundra : combining stable isotope analyses, plot- and ecosystem-scale flux measurements

    Get PDF
    Methane (CH4) fluxes were investigated in a subarctic Russian tundra site in a multi-approach study combining plot-scale data, ecosystem-scale eddy covariance (EC) measurements, and a fine-resolution land cover classification scheme for regional upscaling. The flux data as measured by the two independent techniques resulted in a seasonal (May-October 2008) cumulative CH4 emission of 2.4 (EC) and 3.7 gCH(4) m(-2) (manual chambers) for the source area representative of the footprint of the EC instruments. Upon upscaling for the entire study region of 98.6 km(2), the chamber measured flux data yielded a regional flux estimate of 6.7 gCH(4) m(-2) yr(-1). Our upscaling efforts accounted for the large spatial variability in the distribution of the various land cover types (LCTs) predominant at our study site. Wetlands with emissions ranging from 34 to 53 gCH(4) m(-2) yr(-1) were the most dominant CH4-emitting surfaces. Emissions from thermokarst lakes were an order of magnitude lower, while the rest of the landscape (mineral tundra) was a weak sink for atmospheric methane. Vascular plant cover was a key factor in explaining the spatial variability of CH4 emissions among wetland types, as indicated by the positive correlation of emissions with the leaf area index (LAI). As elucidated through a stable isotope analysis, the dominant CH4 release pathway from wetlands to the atmosphere was plant-mediated diffusion through aerenchyma, a process that discriminates against C-13-CH4. The CH4 released to the atmosphere was lighter than that in the surface porewater, and delta C-13 in the emitted CH4 correlated negatively with the vascular plant cover (LAI). The mean value of delta C-13 obtained here for the emitted CH4, 68.2 +/- 2.0 %, is within the range of values from other wetlands, thus reinforcing the use of inverse modelling tools to better constrain the CH4 budget. Based on the IPCC A1B emission scenario, a temperature increase of 6.1 degrees C relative to the present day has been predicted for the European Russian tundra by the end of the 21st Century. A regional warming of this magnitude will have profound effects on the permafrost distribution leading to considerable changes in the regional landscape with a potential for an increase in the areal extent of CH4-emitting wet surfaces.Peer reviewe

    Biophysical interactions in tropical agroforestry systems

    Full text link
    sequential systems, simultaneous systems Abstract. The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interac-tions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offse

    Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

    Get PDF
    Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised.Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing.Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found.Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC

    Experimental and Molecular Modeling Study of the Three-Phase Behavior of ( n

    Full text link
    corecore