2,793 research outputs found

    Stratospheric column NO2 measurements from three Antarctic sites

    Get PDF
    The significance of stratospheric odd-nitrogen compounds in Antarctic ozone depletion studies has prompted an increase in Antarctic activities. Although several species are being studied, work has concentrated on the acquisition of NO2 data. Ground-based measurements of stratospheric column NO2 have been made at Arrival Heights, Antarctica, since spring 1982, with some gaps in the data base. Additional data has been acquired since February 1986 at Pole Station and Halley Bay, thus providing a chain of stations across the continent. The technique used is that of absorption spectroscopy in several wavelength regions, although here only those measurements are reported in the 430 to 450 nm region where strongly structured absorption been determined experimentally. However, theory features due to NO2 are identified in scattered sunlight in the zenith sky. Operation of a moon-tracking system at Arrival Heights has provided some additional data during the polar night. Previous analyses have shown that the NO2 column observed from the ground is strongly influenced by the season, and by the location of the site with respect to that of the polar vortex. The column amount correlates strongly with stratospheric temperature at about 70 mbar. The present data set further illustrates these features, and demonstrates both the strengths and qualifications apparent in the technique

    Nanoflare Activity in the Solar Chromosphere

    Get PDF
    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 10^9 pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. (2011) suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ~360s in a 10,000 km^2 area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.Comment: 7 pages, 3 figures, accepted into Ap

    Propagating Wave Phenomena Detected in Observations and Simulations of the Lower Solar Atmosphere

    Get PDF
    We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magneto-hydrodynamic code, respectively. Each dataset demonstrates a wealth of magneto-acoustic oscillatory behaviour, visible as periodic intensity fluctuations with periods in the range 110-600 s. Almost no propagating waves with periods less than 140s and 110s are detected in the observational and simulated datasets, respectively. High concentrations of power are found in highly magnetised regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of magneto-hydrodynamic simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 Angstrom continuum formation heights of 100 km and 25 km, respectively. Detected magneto-acoustic oscillations exhibit a dominant phase delay of -8 degrees between the G-band and 4170 Angstrom continuum observations, suggesting the presence of upwardly propagating waves. More than 73% of MBPs (73% from observations, 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behaviour detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun's convection zone.Comment: 13 pages, 9 figures, accepted into Ap

    The Velocity Distribution of Solar Photospheric Magnetic Bright Points

    Get PDF
    We use high spatial resolution observations and numerical simulations to study the velocity distribution of solar photospheric magnetic bright points. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, while the numerical simulations were undertaken with the MURaM code for average magnetic fields of 200 G and 400 G. We implemented an automated bright point detection and tracking algorithm on the dataset, and studied the subsequent velocity characteristics of over 6000 structures, finding an average velocity of approximately 1 km/s, with maximum values of 7 km/s. Furthermore, merging magnetic bright points were found to have considerably higher velocities, and significantly longer lifetimes, than isolated structures. By implementing a new and novel technique, we were able to estimate the background magnetic flux of our observational data, which is consistent with a field strength of 400 G.Comment: Accepted for publication in ApJL, 12 pages, 2 figure

    Molecular random tilings as glasses

    Full text link
    We have recently shown [Blunt et al., Science 322, 1077 (2008)] that p-terphenyl-3,5,3',5'-tetracarboxylic acid adsorbed on graphite self-assembles into a two-dimensional rhombus random tiling. This tiling is close to ideal, displaying long range correlations punctuated by sparse localised tiling defects. In this paper we explore the analogy between dynamic arrest in this type of random tilings and that of structural glasses. We show that the structural relaxation of these systems is via the propagation--reaction of tiling defects, giving rise to dynamic heterogeneity. We study the scaling properties of the dynamics, and discuss connections with kinetically constrained models of glasses.Comment: 5 pages, 5 figure

    Tracking magnetic bright point motions through the solar atmosphere

    Get PDF
    High-cadence, multiwavelength observations and simulations are employed for the analysis of solar photospheric magnetic bright points (MBPs) in the quiet Sun. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere (ROSA) imager and the Interferometric Bidimensional Spectrometer at the Dunn Solar Telescope. Our analysis reveals that photospheric MBPs have an average transverse velocity of approximately 1 km s−1, whereas their chromospheric counterparts have a slightly higher average velocity of 1.4 km s−1. Additionally, chromospheric MBPs were found to be around 63 per cent larger than the equivalent photospheric MBPs. These velocity values were compared with the output of numerical simulations generated using the MURAM code. The simulated results were similar, but slightly elevated, when compared to the observed data. An average velocity of 1.3 km s−1 was found in the simulated G-band images and an average of 1.8 km s−1 seen in the velocity domain at a height of 500 km above the continuum formation layer. Delays in the change of velocities were also analysed. Average delays of ∼4 s between layers of the simulated data set were established and values of ∼29 s observed between G-band and Ca II K ROSA observations. The delays in the simulations are likely to be the result of oblique granular shock waves, whereas those found in the observations are possibly the result of a semi-rigid flux tube

    Rubber dam may increase the survival time of dental restorations

    Get PDF
    corecore