21 research outputs found

    Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules

    Get PDF
    AIM: Treatment of sensorineural hearing loss could be advanced using novel drug carriers such as hyperbranched polylysine (HBPL) or lipid nanocapsules (LNCs). This study examined HBPL and LNCs for their cellular uptake and possible toxicity in vitro and in vivo as the first step in developing novel nanosized multifunctional carriers. METHOD: Having incubated HBPL and LNCs with fibroblasts, nanoparticle uptake and cell viability were determined by confocal laser scanning microscopy, fluorescence measurements and neutral red staining. In vivo, electrophysiology, confocal laser scanning microscopy and cytocochleograms were performed for nanoparticle detection and also toxicity studies after intracochlear application. RESULTS: Both nanoparticles were detectable in the fibroblasts\u27 cytoplasm without causing cytotoxic effects. After in vivo application they were visualized in cochlear cells, which did not lead to a change in hearing threshold or loss of hair cells. Biocompatibility and traceability were demonstrated for HBPL and LNCs. Thus, they comply with the basic requirements for drug carriers for potential application in the inner ear

    FCHO controls AP2's initiating role in endocytosis through a Ptdlns(4,5)P-2-dependent switch

    No full text
    Clathrin-mediated endocytosis (CME) is the main mechanism by which mammalian cells control their cell surface proteome. Proper operation of the pivotal CME cargo adaptor AP2 requires membrane-localized Fer/Cip4 homology domain-only proteins (FCHO). Here, live-cell enhanced total internal reflection fluorescence-structured illumination microscopy shows that FCHO marks sites of clathrin-coated pit (CCP) initiation, which mature into uniform-sized CCPs comprising a central patch of AP2 and clathrin corralled by an FCHO/Epidermal growth factor potential receptor substrate number 15 (Eps15) ring. We dissect the network of interactions between the FCHO interdomain linker and AP2, which concentrates, orients, tethers, and partially destabilizes closed AP2 at the plasma membrane. AP2's subsequent membrane deposition drives its opening, which triggers FCHO displacement through steric competition with phosphatidylinositol 4,5-bisphosphate, clathrin, cargo, and CME accessory factors. FCHO can now relocate toward a CCP's outer edge to engage and activate further AP2s to drive CCP growth/maturation
    corecore