26 research outputs found

    Future scenarios for oil palm mortality and infection by Phytophthora palmivora in Colombia, Ecuador and Brazil, extrapolated to Malaysia and Indonesia

    Get PDF
    Palm oil is a very important commodity especially to Malaysia and Indonesia. However, Latin American countries have significant industries, particularly Colombia. Climate change (CC) is a highly probable phenomenon which will affect diseases of oil palm (OP) with Phytophthora palmivora causing devastating outbreaks in Latin America and especially Colombia. Furthermore, the oomycete is an endemic pathogen to other crops in Malaysia such as durian, and is capable of causing disease of OP in vitro. A similar disease has been recorded in Thailand. It is crucial that P. palmivora is controlled in Malaysia and Indonesia because the organism is highly virulent, although there are acute and chronic forms. This current paper investigates the effect of CC on P. palmivora disease and on OP survival via a CLIMEX model for future suitable growth of OP. Postulated schemes are provided for Malaysia and Indonesia for acute and chronic forms of the disease which indicate an extremely high and increasing threat, likely to reduce the sustainability of the OP industry by 2050 and further by 2070 and/or 2100. Brazil appears less threatened by the disease under these scenarios, but their OP is likely to have 100% mortality. The chronic and acute forms of the malady present reduced and high threats respectively to Malaysia and Indonesia. The data herein will be useful for, inter alia, plantation managers who will be able to assess the accuracy of these scenarios in the future. Amelioration methods are required urgently and quarantine procedures need strengthening.(undefined)info:eu-repo/semantics/publishedVersio

    MVB-12, a Fourth Subunit of Metazoan ESCRT-I, Functions in Receptor Downregulation

    Get PDF
    After ligand binding and endocytosis, cell surface receptors can continue to signal from endosomal compartments until sequestered from the cytoplasm. An important mechanism for receptor downregulation in vivo is via the inward budding of receptors into intralumenal vesicles to form specialized endosomes called multivesicular bodies (MVBs) that subsequently fuse with lysosomes, degrading their cargo. This process requires four heterooligomeric protein complexes collectively termed the ESCRT machinery. In yeast, ESCRT-I is a heterotetrameric complex comprised of three conserved subunits and a fourth subunit for which identifiable metazoan homologs were lacking. Using C. elegans, we identify MVB-12, a fourth metazoan ESCRT-I subunit. Depletion of MVB-12 slows the kinetics of receptor downregulation in vivo, but to a lesser extent than inhibition of other ESCRT-I subunits. Consistent with these findings, targeting of MVB-12 to membranes requires the other ESCRT-I subunits, but MVB-12 is not required to target the remaining ESCRT-I components. Both endogenous and recombinant ESCRT-I are stable complexes with a 1:1:1:1 subunit stoichiometry. MVB-12 has two human homologs that co-localize and co-immunoprecipitate with the ESCRT-I component TSG101. Thus, MVB-12 is a conserved core component of metazoan ESCRT-I that regulates its activity during MVB biogenesis

    Genome-Wide Analysis of GLD-1–Mediated mRNA Regulation Suggests a Role in mRNA Storage

    Get PDF
    Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are “stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1–dependent repression prevents precocious translation of OET–promoting mRNAs. Secondly, GLD-1– and CGH-1–dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET–promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised

    Variation at Diabetes-and Obesity-associated loci may mirror neutral patterns of human population diversity and diabetes prevalence in India

    No full text
    South Asian populations harbor a high degree of genetic diversity, due in part to demographic history. Two studies on genome-wide variation in Indian populations have shown that most Indian populations show varying degrees of admixture between ancestral north Indian and ancestral south Indian components. As a result of this structure, genetic variation in India appears to follow a geographic cline. Similarly, Indian populations seem to show detectable differences in diabetes and obesity prevalence between different geographic regions of the country. We tested the hypothesis that genetic variation at diabetes-and obesity-associated loci may be potentially related to different genetic ancestries. We genotyped 2977 individuals from 61 populations across India for 18 SNPs in genes implicated in T2D and obesity. We examined patterns of variation in allele frequency across different geographical gradients and considered state of origin and language affiliation. Our results show that most of the 18 SNPs show no significant correlation with latitude, the geographic cline reported in previous studies, or by language family. Exceptions include KCNQ1 with latitude and THADA and JAK1 with language, which suggests that genetic variation at previously ascertained diabetes-associated loci may only partly mirror geographic patterns of genome-wide diversity in Indian populations

    Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment

    No full text
    Dynamic regulation of cell shape underlies many developmental and immune functions. Cortical remodeling is achieved under the central control of Rho GTPase pathways that modulate an exquisite balance in the dynamic assembly and disassembly of the cytoskeleton and focal adhesions. Macroautophagy (autophagy), associated with bulk cytoplasmic remodeling through lysosomal degradation, has clearly defined roles in cell survival and death. Moreover, it is becoming apparent that proteins, organelles, and pathogens can be targeted for autophagic clearance by selective mechanisms, although the extent and roles of such degradation are unclear. Here we report a conserved role for autophagy specifically in the cortical remodeling of Drosophila blood cells (hemocytes) and mouse macrophages. Continuous autophagy was required for integrin-mediated hemocyte spreading and Rho1-induced cell protrusions. Consequently, hemocytes disrupted for autophagy were impaired in their recruitment to epidermal wounds. Cell spreading required ref(2)P, the Drosophila p62 multiadaptor, implicating selective autophagy as a novel mechanism for modulating cortical dynamics. These results illuminate a specific and conserved role for autophagy as a regulatory mechanism for cortical remodeling, with implications for immune cell function
    corecore