184 research outputs found

    Molecular simulation study of the heat capacity of metastable water between 100K and 300K

    Get PDF
    Molecular simulation study of the heat capacity of metastable water between 100K and 300K Molecular simulations have been used to study the heat capacity of metastable liquid water at low temperature adsorbed on a smooth surface. These calculations aim at modelling water properties measured by experiments performed on water films adsorbed on Vycor nanoporous silica at low temperature. In particular, the study focuses on the non-monotonous variation of the heat capacity around between 100 and 300 K

    Vibrational analysis of d-PCL(530)/siloxane based hybrids doped with two lithium salts

    Get PDF
    Published online: 22 May 2013The present study has been focused on environmentally friendly sol-gel derived electrolytes based on a di-urethane cross-linked d-PCL(530)/siloxane network (where d represents di, PCL identifies the poly(ε–caprolactone) biopolymer and 530 is the average molecular weight in g.mol-1) doped with a wide range of concentration of lithium perchlorate (LiClO4) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Fourier Transform Infrared and Raman (FT-IR and FT-Raman, respectively) spectroscopies have been applied to evaluate the extent of ionic association. Characteristic bands of the PCL(530) segments, of the urethane cross-links and of the anions have been examined to gain insight into the cation/biopolymer, cation/anion and cation/cross-link interactions. In both electrolyte systems “free” ions and contact ions have been identified. The addition of salt modifies the hydrogen-bonded array of the host matrix, causing the destruction/formation of the urethane/urethane aggregates.Fundação para a Ciência e a Tecnologia (FCT

    Geopolymer/PEG Hybrid Materials Synthesis and Investigation of the Polymer Influence on Microstructure and Mechanical Behavior

    Full text link
    Geopolymers are aluminosilicate inorganic polymers, obtained from the alkali activation of powders containing SiO2+Al2O3>80wt%, mainly proposed as environmentally friendly building materials. In this work, metakaolin-based geopolymers have been prepared and a water-soluble polymer, polyethylene glycol (PEG), has been added in different percentages to obtain organic-inorganic hybrid geopolymers. The influence of both the polymer amount and aging time on the structure and the mechanical behavior of the materials were investigated. FTIR spectroscopy allowed us to follow the evolution of the aluminosilicate framework during the geopolymerization process. This analysis revealed that PEG leads to a network which is rich in Al-O-Si bonds and forms H-bonds with the inorganic phase. SEM microscope showed that the two phases are interpenetrated on micrometric scales. Traction and bending tests have been carried out on appropriate samples to investigate the mechanical behavior of the obtained hybrids, showing that both PEG content and aging time affect the material behavior

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF

    Étude des mécanismes électrochimiques dans les films minces d'oxyde de tungstène

    No full text
    Les films minces de WO3 élaborés par le procédé sol-gel présentent des propriétés électrochromes. Dans cet article, nous étudions les processus physiques mis en jeu lors du processus d'insertion électrochimique. Deux composés cristallisés, WO3,2H2O et WO3 orthorhombique, sont étudiés comme composés de référence. La voltammétrie cyclique et les mesures d'impédance complexe permettent de préciser les variations des cinétiques de réaction. Des études de diffraction des rayons X permettent de préciser les changements structuraux intervenant dans ces composés

    Freezing, melting and dynamics of supercooled water confined in porous glass

    No full text
    International audienceThe freezing, melting and dynamics of supercooled water at different hydration of controlled porous glass (CPG) with mean pore sizes 10 nm, 30 nm, 50 nm and 70 nm are studied using differential scanning calorimetry (DSC) and deuteruim nuclear magnetic resonance (2 H-NMR). For saturated samples, the melting tempertaure follows the Gibbs-Thomson relation despite a clear linear decrease of the melting enthalpy when the transition is shifted due to confinement. For partially filled porous glasses the crystalization and melting temperatures as well as enthalpy are lower than for the saturated samples. 2 H-NMR confirms the existence of a non-crystallizable part of water adsorbed on the surface of pores. At room temperature, spin-lattice relaxation rate (1/T1) is proportional to the inverse of the mean pore size indicating that the relaxation is governed by a surface limited process. At low tempertaure relaxation rate follows the Vogel-Fulcher-Tammann (VFT) relation

    Melting of ice in porous glass: why water and solvents confined in small pores do not crystallize?

    No full text
    The melting of ice in porous glass having different distribution of pores sizes is analyzed in details. One shows that confined water crystallizes only partially and that an interface layer, between the ice crystallites and the surface of the pore, remains liquid. Properties of this non crystalline interface at low temperature is studied by NMR and DSC. Both methods lead to an interface thickness h of the order of 0.5 nm, this explains why water do not crystallize when the dimension of confinement is less than a critical length d1d^{\ast }\sim 1 nm. The variation of the melting enthalpy per gram of total amount of water with the confinement length is explained taking into account two effects: a) the presence of this layer of water at the interface and b) the linear variation of the melting enthalpy ΔHm\Delta H_{m} with the melting temperature Tm. From the data of the literature one draws the same conclusions concerning other solvents in similar porous materials. Also one points out the important role of the glass temperature Tg in preventing the crystallization of the liquids confined in small pores and/or between the crystallites and the surface of the pores

    Propriétés photoélectrochimiques des gels d’oxyde de tungstène

    No full text
    Des films d’oxyde de tungstène WO3,xH2O (amorphe et cristallisés, 0 ≤ x ≤ 2) ont été élaborés par le procédé sol-gel. Ils présentent des propriétés électrochromes et photoélectrochimiques. L’étude de la réponse photoélectrochimique permet d’obtenir des informations sur le phénomène de réduction-insertion électrochimique
    corecore