279 research outputs found

    Stakeholders’ views on drug development: the congenital disorders of glycosylation community perspective

    Get PDF
    Background Congenital disorders of glycosylation (CDG) are a large family of rare genetic diseases for which therapies are virtually nonexistent. However, CDG therapeutic research has been expanding, thanks to the continuous efforts of the CDG medical/scientific and patient communities. Hence, CDG drug development is a popular research topic. The main aim of this study was to understand current and steer future CDG drug development and approval by collecting and analysing the views and experiences of the CDG community, encompassing professionals and families. An electronic (e-)survey was developed and distributed to achieve this goal. Results A total of 128 respondents (46 CDG professionals and 82 family members), mainly from Europe and the USA, participated in this study. Most professionals (95.0%) were relatively familiar with drug development and approval processes, while CDG families revealed low familiarity levels, with 8.5% admitting to never having heard about drug development. However, both stakeholder groups agreed that patients and families make significant contributions to drug development and approval. Regarding their perceptions of and experiences with specific drug development and approval tools, namely biobanks, disease models, patient registries, natural history studies (NHS) and clinical trials (CT), the CDG community stakeholders described low use and participation, as well as variable familiarity. Additionally, CDG professionals and families shared conflicting views about CT patient engagement and related information sharing. Families reported lower levels of involvement in CT design (25.0% declared ever being involved) and information (60.0% stated having been informed) compared to professionals (60.0% and 85.7%, respectively). These contrasting perceptions were further extended to their insights and experiences with patient-centric research. Finally, the CDG community (67.4% of professionals and 54.0% of families) reported a positive vision of artificial intelligence (AI) as a drug development tool. Nevertheless, despite the high AI awareness among CDG families (76.8%), professionals described limited AI use in their research (23.9%). Conclusions This community-centric study sheds new light on CDG drug development and approval. It identifies educational, communication and research gaps and opportunities for CDG professionals and families that could improve and accelerate CDG therapy development

    listening to what matters for the patients and health professionals

    Get PDF
    Funding Information: The authors would like to acknowledge the members of the medical and patient committees for the input, advice and experiences shared for the guidance of this study. Namely, to AM, SP, JP, LR, MC, RF, TR and JB for being part of the patient committee and to JJ, EM, LB, DCo, DCa, CTL, RA, CL and AE for integrating the medical committee. We also want to acknowledge the volunteers from the NOVA Sci & Tech Volunteer program that helped with the organisation of this project. Funding Information: This work was supported by the CDG & Allies—Professionals and Patient Associations International Network (CDG&Allies-PPAIN) and by national funds from FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the Project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences—UCIBIO, the Project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy—i4HB C.P. and R.F. were funded by Fundação para a Ciência e Tecnologia with the Grants SFRH/BD/138647/2018 and (SFRH/BD/124326/2016) respectively. Publisher Copyright: © 2022, The Author(s).Background: Congenital disorders of glycosylation (CDG) are a growing group of rare genetic disorders. The most common CDG is phosphomannomutase 2 (PMM2)-CDG which often has a severe clinical presentation and life-limiting consequences. There are no approved therapies for this condition. Also, there are no validated disease-specific quality of life (QoL) scales to assess the heterogeneous clinical burden of PMM2-CDG which presents a challenge for the assessment of the disease severity and the impact of a certain treatment on the course of the disease. Aim and methods: This study aimed to identify the most impactful clinical signs and symptoms of PMM2-CDG, and specific patient and observer reported outcome measures (PROMs and ObsROMs, respectively) that can adequately measure such impact on patients’ QoL. The most burdensome signs and symptoms were identified through input from the CDG community using a survey targeting PMM2-CDG families and experts, followed by family interviews to understand the real burden of these symptoms in daily life. The list of signs and symptoms was then verified and refined by patient representatives and medical experts in the field. Finally, a literature search for PROMs and ObsROMs used in other rare or common diseases with similar signs and symptoms to those of PMM2-CDG was performed. Results: Twenty-four signs/symptoms were identified as the most impactful throughout PMM2-CDG patients’ lifetime. We found 239 articles that included tools to measure those community-selected PMM2-CDG symptoms. Among them, we identified 80 QoL scales that address those signs and symptoms and, subsequently, their psychometric quality was analysed. These scales could be applied directly to the PMM2-CDG population or adapted to create the first PMM2-CDG-specific QoL questionnaire. Conclusion: Identifying the impactful clinical manifestations of PMM2-CDG, along with the collection of PROMs/ObsROMs assessing QoL using a creative and community-centric methodology are the first step towards the development of a new, tailored, and specific PMM2-CDG QoL questionnaire. These findings can be used to fill a gap in PMM2-CDG clinical development. Importantly, this methodology is transferable to other CDG and rare diseases with multiple signs and symptoms.publishersversionpublishe

    Congenital Disorders of Glycosylation in Portugal—Two Decades of Experience

    Get PDF
    Objective: To describe the clinical, biochemical, and genetic features of both new and previously reported patients with congenital disorders of glycosylation (CDGs) diagnosed in Portugal over the last 20 years. Study design: The cohort includes patients with an unexplained multisystem or single organ involvement, with or without psychomotor disability. Serum sialotransferrin isoforms and, whenever necessary, apolipoprotein CIII isoforms and glycan structures were analyzed. Additional studies included measurement of phosphomannomutase (PMM) activity and analysis of lipid-linked oligosaccharides in fibroblasts. Sanger sequencing and massive parallel sequencing were used to identify causal variants or the affected gene, respectively. Results: Sixty-three individuals were diagnosed covering 14 distinct CDGs; 43 patients diagnosed postnatally revealed a type 1, 14 a type 2, and 2 a normal pattern on serum transferrin isoelectrofocusing. The latter patients were identified by whole exome sequencing. Nine of them presented also a hypoglycosylation pattern on apolipoprotein CIII isoelectrofocusing, pointing to an associated O-glycosylation defect. Most of the patients (62%) are PMM2-CDG and the remaining carry pathogenic variants in ALG1, ATP6AP1, ATP6AP2, ATP6V0A2, CCDC115, COG1, COG4, DPAGT1, MAN1B1, SLC35A2, SRD5A3, RFT1, or PGM1. Conclusions: Portuguese patients with CDGs are presented in this report, some of them showing unique clinical phenotypes. Among the 14 genes mutated in Portuguese individuals, 8 are shared with a previously reported Spanish cohort. However, regarding the mutational spectrum of PMM2-CDG, the most frequent CDG, a striking similarity between the 2 populations was found, as only 1 mutated allele found in the Portuguese group has not been reported in Spain.info:eu-repo/semantics/publishedVersio

    Night Myopia Studied with an Adaptive Optics Visual Analyzer

    Get PDF
    PURPOSE: Eyes with distant objects in focus in daylight are thought to become myopic in dim light. This phenomenon, often called "night myopia" has been studied extensively for several decades. However, despite its general acceptance, its magnitude and causes are still controversial. A series of experiments were performed to understand night myopia in greater detail. METHODS: We used an adaptive optics instrument operating in invisible infrared light to elucidate the actual magnitude of night myopia and its main causes. The experimental setup allowed the manipulation of the eye's aberrations (and particularly spherical aberration) as well as the use of monochromatic and polychromatic stimuli. Eight subjects with normal vision monocularly determined their best focus position subjectively for a Maltese cross stimulus at different levels of luminance, from the baseline condition of 20 cd/m(2) to the lowest luminance of 22 Ă— 10(-6) cd/m(2). While subjects performed the focusing tasks, their eye's defocus and aberrations were continuously measured with the 1050-nm Hartmann-Shack sensor incorporated in the adaptive optics instrument. The experiment was repeated for a variety of controlled conditions incorporating specific aberrations of the eye and chromatic content of the stimuli. RESULTS: We found large inter-subject variability and an average of -0.8 D myopic shift for low light conditions. The main cause responsible for night myopia was the accommodation shift occurring at low light levels. Other factors, traditionally suggested to explain night myopia, such as chromatic and spherical aberrations, have a much smaller effect in this mechanism. CONCLUSIONS: An adaptive optics visual analyzer was applied to study the phenomenon of night myopia. We found that the defocus shift occurring in dim light is mainly due to accommodation errors

    Nijmegen paediatric CDG rating scale: a novel tool to assess disease progression

    Get PDF
    Congenital disorders of glycosylation (CDG) are a group of clinically heterogeneous inborn errors of metabolism. At present, treatment is available for only one CDG, but potential treatments for the other CDG are on the horizon. It will be vitally important in clinical trials of such agents to have a clear understanding of both the natural history of CDG and the corresponding burden of disability suffered by patients. To date, no multicentre studies have attempted to document the natural history of CDG. This is in part due to the lack of a reliable assessment tool to score CDG’s diverse clinical spectrum. Based on our earlier experience evaluating disease progression in disorders of oxidative phosphorylation, we developed a practical and semi-quantitative rating scale for children with CDG. The Nijmegen Paediatric CDG Rating Scale (NPCRS) has been validated in 12 children, offering a tool to objectively monitor disease progression. We undertook a successful trial of the NPCRS with a collaboration of nine experienced physicians, using video records of physical and neurological examination of patients. The use of NPCRS can facilitate both longitudinal and natural history studies that will be essential for future interventions

    From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases

    Get PDF
    Polyisoprenoid alcohols are membrane lipids that are present in every cell, conserved from archaea to higher eukaryotes. The most common form, alpha-saturated polyprenol or dolichol is present in all tissues and most organelle membranes of eukaryotic cells. Dolichol has a well defined role as a lipid carrier for the glycan precursor in the early stages of N-linked protein glycosylation, which is assembled in the endoplasmic reticulum of all eukaryotic cells. Other glycosylation processes including C- and O-mannosylation, GPI-anchor biosynthesis and O-glucosylation also depend on dolichol biosynthesis via the availability of dolichol-P-mannose and dolichol-P-glucose in the ER. The ubiquity of dolichol in cellular compartments that are not involved in glycosylation raises the possibility of additional functions independent of these protein post-translational modifications. The molecular basis of several steps involved in the synthesis and the recycling of dolichol and its derivatives is still unknown, which hampers further research into this direction. In this review, we summarize the current knowledge on structural and functional aspects of dolichol metabolites. We will describe the metabolic disorders with a defect in known steps of dolichol biosynthesis and recycling in human and discuss their pathogenic mechanisms. Exploration of the developmental, cellular and biochemical defects associated with these disorders will provide a better understanding of the functions of this lipid class in human
    • …
    corecore