24 research outputs found

    Tolerance of human embryonic stem cell derived islet progenitor cells to vitrification-relevant solutions

    Get PDF
    We have previously shown that human embryonic stem cell derived islet progenitors (hESC-IPs), encapsulated inside an immunoprotective device, mature in vivo and ameliorate diabetes in mice. The ability to cryopreserve hESC-IPs preloaded in these devices would enhance consistency and portability, but traditional ‘slow freezing’ methods did not work well for cells encapsulated in the device. Vitrification is an attractive alternative cryopreservation approach. To assess the tolerance of hESC-IPs to vitrification relevant conditions, we here are reporting cell survival following excursions in tonicity, exposure to fifteen 40% v/v combinations of 4 cryoprotectants, and varied methods for addition and elution. We find that 78% survival is achieved using a protocol in which cells are abruptly (in one step) exposed to a solution containing 10% v/v each dimethyl sulfoxide, propylene glycol, ethylene glycol, and glycerol on ice, and eluted step-wise with DPBS + 0.5 M sucrose at 37 °C. Importantly, the hESC-IPs also maintain expression of the critical islet progenitor markers PDX-1, NKX6.1, NGN3 and NEURO-D1. Thus, hESC-IPs exhibit robust tolerance to exposure to vitrification solutions in relevant conditions

    Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic β Cell Line βLox5

    Get PDF
    Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways

    Role of Proinsulin Self-Association in Mutant INS Gene–Induced Diabetes of Youth

    Get PDF
    Abnormal interactions between misfolded mutant and wild-type (WT) proinsulin (PI) in the endoplasmic reticulum (ER) drive the molecular pathogenesis of mutant INS gene-induced diabetes of youth (MIDY). How these abnormal interactions are initiated remains unknown. Normally, PI-WT dimerizes in the ER. Here, we suggest that the normal PI-PI contact surface, involving the B-chain, contributes to dominant-negative effects of misfolded MIDY mutants. Specifically, we find that PI B-chain tyrosine-16 (Tyr-B16), which is a key residue in normal PI dimerization, helps confer dominant-negative behavior of MIDY mutant PI-C(A7)Y. Substitutions of Tyr-B16 with either Ala, Asp, or Pro in PI-C(A7)Y decrease the abnormal interactions between the MIDY mutant and PI-WT, rescuing PI-WT export, limiting ER stress, and increasing insulin production in β-cells and human islets. This study reveals the first evidence indicating that noncovalent PI-PI contact initiates dominant-negative behavior of misfolded PI, pointing to a novel therapeutic target to enhance PI-WT export and increase insulin production

    The IRE1α/XBP1s Pathway Is Essential for the Glucose Response and Protection of β Cells

    No full text
    <div><p>Although glucose uniquely stimulates proinsulin biosynthesis in β cells, surprisingly little is known of the underlying mechanism(s). Here, we demonstrate that glucose activates the unfolded protein response transducer inositol-requiring enzyme 1 alpha (IRE1α) to initiate X-box-binding protein 1 (<i>Xbp1</i>) mRNA splicing in adult primary β cells. Using mRNA sequencing (mRNA-Seq), we show that unconventional <i>Xbp1</i> mRNA splicing is required to increase and decrease the expression of several hundred mRNAs encoding functions that expand the protein secretory capacity for increased insulin production and protect from oxidative damage, respectively. At 2 wk after tamoxifen-mediated <i>Ire1α</i> deletion, mice develop hyperglycemia and hypoinsulinemia, due to defective β cell function that was exacerbated upon feeding and glucose stimulation. Although previous reports suggest IRE1α degrades insulin mRNAs, <i>Ire1α</i> deletion did not alter insulin mRNA expression either in the presence or absence of glucose stimulation. Instead, β cell failure upon <i>Ire1α</i> deletion was primarily due to reduced proinsulin mRNA translation primarily because of defective glucose-stimulated induction of a dozen genes required for the signal recognition particle (SRP), SRP receptors, the translocon, the signal peptidase complex, and over 100 other genes with many other intracellular functions. In contrast, <i>Ire1α</i> deletion in β cells increased the expression of over 300 mRNAs encoding functions that cause inflammation and oxidative stress, yet only a few of these accumulated during high glucose. Antioxidant treatment significantly reduced glucose intolerance and markers of inflammation and oxidative stress in mice with β cell-specific <i>Ire1α</i> deletion. The results demonstrate that glucose activates IRE1α-mediated <i>Xbp1</i> splicing to expand the secretory capacity of the β cell for increased proinsulin synthesis and to limit oxidative stress that leads to β cell failure.</p></div
    corecore