441 research outputs found

    Active cancellation of servo-induced noise on stabilized lasers via feedforward

    Full text link
    Many precision laser applications require active frequency stabilization. However, such stabilization loops operate by pushing noise to frequencies outside their bandwidth, leading to large "servo bumps" that can have deleterious effects for certain applications. The prevailing approach to filtering this noise is to pass the laser through a high finesse optical cavity, which places constraints on the system design. Here, we propose and demonstrate a different approach where a frequency error signal is derived from a beat note between the laser and the light that passes through the reference cavity. The phase noise derived from this beat note is fed forward to an electro-optic modulator after the laser, carefully accounting for relative delay, for real-time frequency correction. With a Hz-linewidth laser, we show ≳20\gtrsim20 dB noise suppression at the peak of the servo bump (≈250\approx250 kHz), and a noise suppression bandwidth of ≈5\approx5 MHz -- well beyond the servo bump. By simulating the Rabi dynamics of a two-level atom with our measured data, we demonstrate substantial improvements to the pulse fidelity over a wide range of Rabi frequencies. Our approach offers a simple and versatile method for obtaining a clean spectrum of a narrow linewidth laser, as required in many emerging applications of cold atoms, and is readily compatible with commercial systems that may even include wavelength conversion

    Sterilization of lung matrices by supercritical carbon dioxide

    Get PDF
    Lung engineering is a potential alternative to transplantation for patients with end-stage pulmonary failure. Two challenges critical to the successful development of an engineered lung developed from a decellularized scaffold include (i) the suppression of resident infectious bioburden in the lung matrix, and (ii) the ability to sterilize decellularized tissues while preserving the essential biological and mechanical features intact. To date, the majority of lungs are sterilized using high concentrations of peracetic acid (PAA) resulting in extracellular matrix (ECM) depletion. These mechanically altered tissues have little to no storage potential. In this study, we report a sterilizing technique using supercritical carbon dioxide (ScCO(2)) that can achieve a sterility assurance level 10(−6) in decellularized lung matrix. The effects of ScCO(2) treatment on the histological, mechanical, and biochemical properties of the sterile decellularized lung were evaluated and compared with those of freshly decellularized lung matrix and with PAA-treated acellular lung. Exposure of the decellularized tissue to ScCO(2) did not significantly alter tissue architecture, ECM content or organization (glycosaminoglycans, elastin, collagen, and laminin), observations of cell engraftment, or mechanical integrity of the tissue. Furthermore, these attributes of lung matrix did not change after 6 months in sterile buffer following sterilization with ScCO(2), indicating that ScCO(2) produces a matrix that is stable during storage. The current study's results indicate that ScCO(2) can be used to sterilize acellular lung tissue while simultaneously preserving key biological components required for the function of the scaffold for regenerative medicine purposes

    Repetitive readout and real-time control of nuclear spin qubits in 171^{171}Yb atoms

    Full text link
    We demonstrate high fidelity repetitive projective measurements of nuclear spin qubits in an array of neutral ytterbium-171 (171^{171}Yb) atoms. We show that the qubit state can be measured with a fidelity of 0.995(4) under a condition that leaves it in the state corresponding to the measurement outcome with a probability of 0.993(6) for a single tweezer and 0.981(4) averaged over the array. This is accomplished by near-perfect cyclicity of one of the nuclear spin qubit states with an optically excited state under a magnetic field of B=58B=58 G, resulting in a bright/dark contrast of ≈105\approx10^5 during fluorescence readout. The performance improves further as ∼1/B2\sim1/B^2. The state-averaged readout survival of 0.98(1) is limited by off-resonant scattering to dark states and can be addressed via post-selection by measuring the atom number at the end of the circuit, or during the circuit by performing a measurement of both qubit states. We combine projective measurements with high-fidelity rotations of the nuclear spin qubit via an AC magnetic field to explore several paradigmatic scenarios, including the non-commutivity of measurements in orthogonal bases, and the quantum Zeno mechanism in which measurements "freeze" coherent evolution. Finally, we employ real-time feedforward to repetitively deterministically prepare the qubit in the +z+z or −z-z direction after initializing it in an orthogonal basis and performing a projective measurement in the zz-basis. These capabilities constitute an important step towards adaptive quantum circuits with atom arrays, such as in measurement-based quantum computation, fast many-body state preparation, holographic dynamics simulations, and quantum error correction

    It Pays to Be Bumpy: Drag Reducing Armor in The Pacific Spiny Lumpsucker, \u3cem\u3eEumicrotremus Orbis\u3c/em\u3e

    Get PDF
    Armor is a multipurpose set of structures that has evolved independently at least 30 times in fishes. In addition to providing protection, armor can manipulate flow, increase camouflage, and be sexually dimorphic. There are potential tradeoffs in armor function: increased impact resistance may come at the cost of maneuvering ability; and ornate armor may offer visual or protective advantages, but could incur excess drag. Pacific spiny lumpsuckers (Eumicrotremus orbis) are covered in rows of odontic, cone-shaped armor whorls, protecting the fish from wave driven impacts and the threat of predation. We are interested in measuring the effects of lumpsucker armor on the hydrodynamic forces on the fish. Bigger lumpsuckers have larger and more complex armor which may incur a greater hydrodynamic cost. In addition to their protective armor, lumpsuckers have evolved a ventral adhesive disc, allowing them to remain stationary in their environment. We hypothesize a tradeoff between the armor and adhesion: little fish prioritize suction while big fish prioritize protection. Using micro-CT we compared armor volume to disc area over lumpsucker development and built 3D models to measure changes in drag over ontogeny. We found that drag and drag coefficients decrease with greater armor coverage and vary consistently with orientation. Adhesive disc area is isometric but safety factor increases with size, allowing larger fish to remain attached in higher flows than smaller fish

    Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15

    Get PDF
    This is the fifteenth in a series of evaluated sets of rate constants and photochemical cross sections compiled by the NASA Panel for Data Evaluation. The data are used primarily to model stratospheric and upper tropospheric processes, with particular emphasis on the ozone layer and its possible perturbation by anthropogenic and natural phenomena. Copies of this evaluation are available in electronic form and may be printed from the following Internet URL: http://jpldataeval.jpl.nasa.gov/

    Machine Intelligence Identifies Soluble TNFa as a Therapeutic Target for Spinal Cord Injury

    Get PDF
    Traumatic spinal cord injury (SCI) produces a complex syndrome that is expressed across multiple endpoints ranging from molecular and cellular changes to functional behavioral deficits. Effective therapeutic strategies for CNS injury are therefore likely to manifest multi-factorial effects across a broad range of biological and functional outcome measures. Thus, multivariate analytic approaches are needed to capture the linkage between biological and neurobehavioral outcomes. Injury-induced neuroinflammation (NI) presents a particularly challenging therapeutic target, since NI is involved in both degeneration and repair. Here, we used big-data integration and large-scale analytics to examine a large dataset of preclinical efficacy tests combining five different blinded, fully counter-balanced treatment trials for different acute anti-inflammatory treatments for cervical spinal cord injury in rats. Multi-dimensional discovery, using topological data analysis (TDA) and principal components analysis (PCA) revealed that only one showed consistent multidimensional syndromic benefit: intrathecal application of recombinant soluble TNFα receptor 1 (sTNFR1), which showed an inverse-U dose response efficacy. Using the optimal acute dose, we showed that clinically-relevant 90 min delayed treatment profoundly affected multiple biological indices of NI in the first 48 h after injury, including reduction in pro-inflammatory cytokines and gene expression of a coherent complex of acute inflammatory mediators and receptors. Further, a 90 min delayed bolus dose of sTNFR1 reduced the expression of NI markers in the chronic perilesional spinal cord, and consistently improved neurological function over 6 weeks post SCI. These results provide validation of a novel strategy for precision preclinical drug discovery that is likely to improve translation in the difficult landscape of CNS trauma, and confirm the importance of TNFα signaling as a therapeutic target
    • …
    corecore