2,147 research outputs found
Aggregation of chemotactic organisms in a differential flow
We study the effect of advection on the aggregation and pattern formation in
chemotactic systems described by Keller-Segel type models. The evolution of
small perturbations is studied analytically in the linear regime complemented
by numerical simulations. We show that a uniform differential flow can
significantly alter the spatial structure and dynamics of the chemotactic
system. The flow leads to the formation of anisotropic aggregates that move
following the direction of the flow, even when the chemotactic organisms are
not directly advected by the flow. Sufficiently strong advection can stop the
aggregation and coarsening process that is then restricted to the direction
perpendicular to the flow
Absolute instabilities of travelling wave solutions in a Keller-Segel model
We investigate the spectral stability of travelling wave solutions in a
Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity
function and a constant, sublinear, and linear consumption rate. Linearising
around the travelling wave solutions, we locate the essential and absolute
spectrum of the associated linear operators and find that all travelling wave
solutions have essential spectrum in the right half plane. However, we show
that in the case of constant or sublinear consumption there exists a range of
parameters such that the absolute spectrum is contained in the open left half
plane and the essential spectrum can thus be weighted into the open left half
plane. For the constant and sublinear consumption rate models we also determine
critical parameter values for which the absolute spectrum crosses into the
right half plane, indicating the onset of an absolute instability of the
travelling wave solution. We observe that this crossing always occurs off of
the real axis
Serving Innovation in Scholarly Communication with the Open Platform “Digital Peer Publishing"
The internet causes a continuous emergence of novel forms of scholarly communication and collaboration. Electronic publishing provides a means for representing eventual outcomes of these processes, i.e. all types of content such as papers and advanced forms of media. Electronic journals are often chosen as an adequate publishing format because they simultaneously deliver content in a well-known manner but, at the same time, allow extending traditional publishing with innovative features. The initiative Digital Peer Publishing (DiPP) provides technological, organizational and legal frameworks and tools that help to incubate and proliferate such innovative publishing projects. The hosting platform reflects principles of a Service Oriented Architecture. It combines, via Web Services, already established components such as an OAI repository (Fedora) and a Web Content Management System (Plone) with customized workflows for document processing, conversion and distribution. As an open platform it is capable of integrating external tools and services or acts itself as a service provider. It is therefore disposed for supplementing research infrastructures with electronic publishing
Surface resonance of the (2×1) reconstructed lanthanum hexaboride (001)-cleavage plane : a combined STM and DFT study
We performed a combined study of the (001)-cleavage plane of lanthanum hexaboride (LaB6) using scanning tunneling microscopy and density-functional theory (DFT). Experimentally, we found a (2×1) reconstructed surface on a local scale. The reconstruction is only short-range ordered and tends to order perpendicularly to step edges. At larger distances from surface steps, the reconstruction evolves to a labyrinthlike pattern. These findings are supported by low-energy electron diffraction experiments. Slab calculations within the framework of DFT show that the atomic structure consists of parallel lanthanum chains on top of boron octahedra. Scanning tunneling spectroscopy shows a prominent spectral feature at −0.6eV. Using DFT, we identify this structure as a surface resonance of the (2×1) reconstructed LaB6 (100) surface which is dominated by boron dangling bond states and lanthanum d states
The one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is
replaced by a non-local operator, namely the fractional diffusion with exponent
. We prove some features related to the classical
two-dimensional Keller-Segel system: blow-up may or may not occur depending on
the initial data. More precisely a singularity appears in finite time when
and the initial configuration of cells is sufficiently concentrated.
On the opposite, global existence holds true for if the initial
density is small enough in the sense of the norm.Comment: 12 page
How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing
The purpose of the present study was to determine the effects of a plantar
pressure-based, tongue-placed tactile biofeedback on postural control
mechanisms during quiet standing. To this aim, sixteen young healthy adults
were asked to stand as immobile as possible with their eyes closed in two
conditions of No-biofeedback and Biofeedback. Centre of foot pressure (CoP)
displacements, recorded using a force platform, were used to compute the
horizontal displacements of the vertical projection the centre of gravity
(CoGh) and those of the difference between the CoP and the vertical projection
of the CoG (CoP-CoGv). Altogether, the present findings suggest that the main
way the plantar pressure-based, tongue-placed tactile biofeedback improves
postural control during quiet standing is via both a reduction of the
correction thresholds and an increased efficiency of the corrective mechanism
involving the CoGh displacements
Critical dynamics of self-gravitating Langevin particles and bacterial populations
We study the critical dynamics of the generalized Smoluchowski-Poisson system
(for self-gravitating Langevin particles) or generalized Keller-Segel model
(for the chemotaxis of bacterial populations). These models [Chavanis & Sire,
PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading
to the Tsallis statistics. The equilibrium states correspond to polytropic
configurations with index similar to polytropic stars in astrophysics. At
the critical index (where is the dimension of space),
there exists a critical temperature (for a given mass) or a
critical mass (for a given temperature). For or
the system tends to an incomplete polytrope confined by the box (in a
bounded domain) or evaporates (in an unbounded domain). For
or the system collapses and forms, in a finite time, a Dirac peak
containing a finite fraction of the total mass surrounded by a halo. This
study extends the critical dynamics of the ordinary Smoluchowski-Poisson system
and Keller-Segel model in corresponding to isothermal configurations with
. We also stress the analogy between the limiting mass of
white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial
populations in the generalized Keller-Segel model of chemotaxis
Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity
Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever
Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion
Recently, there has been a wide interest in the study of aggregation
equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate
diffusion. The focus of this paper is the unification and generalization of the
well-posedness theory of these models. We prove local well-posedness on bounded
domains for dimensions and in all of space for , the
uniqueness being a result previously not known for PKS with degenerate
diffusion. We generalize the notion of criticality for PKS and show that
subcritical problems are globally well-posed. For a fairly general class of
problems, we prove the existence of a critical mass which sharply divides the
possibility of finite time blow up and global existence. Moreover, we compute
the critical mass for fully general problems and show that solutions with
smaller mass exists globally. For a class of supercritical problems we prove
finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page
The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout
A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built
as a shashlik lead-scintillator calorimeter with wave length shifter fiber
readout. Before installation it was tested and calibrated using the X5 test
beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in
the momentum range of 10 to 100 GeV/c were used. Results of these measurements
are presented as well as a calibration monitoring system based on a Co
source.Comment: 38 pages (Latex); 26 figures (ps
- …
