199 research outputs found

    Gendered self-views across 62 countries: A test of competing models

    Get PDF
    Social role theory posits that binary gender gaps in agency and communion should be larger in less egalitarian countries, reflecting these countries’ more pronounced sex-based power divisions. Conversely, evolutionary and self-construal theorists suggest that gender gaps in agency and communion should be larger in more egalitarian countries, reflecting the greater autonomy support and flexible self-construction processes present in these countries. Using data from 62 countries (N = 28,640), we examine binary gender gaps in agentic and communal self-views as a function of country-level objective gender equality (the Global Gender Gap Index) and subjective distributions of social power (the Power Distance Index). Findings show that in more egalitarian countries, gender gaps in agency are smaller and gender gaps in communality are larger. These patterns are driven primarily by cross-country differences in men’s self-views and by the Power Distance Index (PDI) more robustly than the Global Gender Gap Index (GGGI). We consider possible causes and implications of these findings.info:eu-repo/semantics/acceptedVersio

    miR-375 Targets 3′-Phosphoinositide–Dependent Protein Kinase-1 and Regulates Glucose-Induced Biological Responses in Pancreatic β-Cells

    Get PDF
    OBJECTIVE—MicroRNAs are short, noncoding RNAs that regulate gene expression. We hypothesized that the phosphatidylinositol 3-kinase (PI 3-kinase) cascade known to be important in β-cell physiology could be regulated by microRNAs. Here, we focused on the pancreas-specific miR-375 as a potential regulator of its predicted target 3′-phosphoinositide–dependent protein kinase-1 (PDK1), and we analyzed its implication in the response of insulin-producing cells to elevation of glucose levels

    PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis

    Get PDF
    OBJECTIVE: The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in beta-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal beta-cells, besides evaluating its role in cytokine-induced signaling and beta-cell apoptosis. RESEARCH DESIGN AND METHODS: PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in beta-cells, allowing the assessment of cell death after cytokine treatment. RESULTS: PTPN2 mRNA and protein are expressed in human islets and rat beta-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat beta-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1beta + interferon (IFN)-gamma-induced beta-cell apoptosis and turned IFN-gamma alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-gamma-induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected beta-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced beta-cell death in PTPN2-deficient cells. CONCLUSIONS: We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-gamma signal transduction at the beta-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes

    What’s in a surname? Physique, aptitude, and sports type comparisons between Tailors and Smiths

    Get PDF
    Combined heredity of surnames and physique, coupled with past marriage patterns and trade-specific physical aptitude and selection factors, may have led to differential assortment of bodily characteristics among present-day men with specific trade-reflecting surnames (Tailor vs. Smith). Two studies reported here were partially consistent with this genetic-social hypothesis, first proposed by Bäumler (1980). Study 1 (N = 224) indicated significantly higher self-rated physical aptitude for prototypically strength-related activities (professions, sports, hobbies) in a random sample of Smiths. The counterpart effect (higher aptitude for dexterity-related activities among Tailors) was directionally correct, but not significant, and Tailor-Smith differences in basic physique variables were not significant. Study 2 examined two large datasets (Austria/Germany combined, and UK: N = 7001 and 20532) of men’s national high-score lists for track-and-field events requiring different physiques. In both datasets, proportions of Smiths significantly increased from light-stature over medium-stature to heavy-stature sports categories. The predicted counterpart effect (decreasing prevalences of Tailors along these categories) was not supported. Related prior findings, implicit egotism as an alternative interpretation of the evidence, and directions for further inquiry are discussed in conclusion

    JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells

    Get PDF
    Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis

    The Tissue Systems Pathology Test Outperforms Pathology Review in Risk Stratifying Patients With Low-Grade Dysplasia

    Get PDF
    BACKGROUND & AIMS: Low-grade dysplasia (LGD) is associated with an increased risk of progression in Barrett’s esophagus (BE); however, the diagnosis of LGD is limited by substantial interobserver variability. Multiple studies have shown that an objective tissue systems pathology test (TissueCypher Barrett’s Esophagus Test, TSP-9), can effectively predict neoplastic progression in patients with BE. This study aimed to compare the risk stratification performance of the TSP-9 test vs benchmarks of generalist and expert pathology. METHODS: A blinded cohort study was conducted in the screening cohort of a randomized controlled trial of patients with BE with community-based LGD. Biopsies from the first endoscopy with LGD were assessed by the TSP-9 test and independently reviewed by 30 pathologists from 5 countries per standard practice. The accuracy of the test and the diagnoses in predicting high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC) were compared. RESULTS: A total of 154 patients with BE (122 men), mean age 60.9 ± 9.8 years were studied. Twenty-four patients progressed to HGD/EAC within 5 years (median time of 1.7 years) and 130 did not progress to HGD/EAC within 5 years (median 7.8 years follow-up). The TSP-9 test demonstrated higher sensitivity (71% vs mean 63%, range 33%–88% across 30 pathologists), than the pathology review in detecting patients who progressed (P = .01186). CONCLUSIONS: The TSP-9 test outperformed the pathologists in risk stratifying patients with BE with LGD. Care guided by the test can provide an effective solution to variable pathology review of LGD, improving health outcomes by upstaging care to therapeutic intervention for patients at high risk for progression, while reducing unnecessary interventions in low-risk patients

    Assay for high glucose-mediated islet cell sensitization to apoptosis induced by streptozotocin and cytokines

    Get PDF
    Pancreatic β-cell apoptosis is known to participate in the β-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB)

    Susceptibility of Pancreatic Beta Cells to Fatty Acids Is Regulated by LXR/PPARα-Dependent Stearoyl-Coenzyme A Desaturase

    Get PDF
    Chronically elevated levels of fatty acids-FA can cause beta cell death in vitro. Beta cells vary in their individual susceptibility to FA-toxicity. Rat beta cells were previously shown to better resist FA-toxicity in conditions that increased triglyceride formation or mitochondrial and peroxisomal FA-oxidation, possibly reducing cytoplasmic levels of toxic FA-moieties. We now show that stearoyl-CoA desaturase-SCD is involved in this cytoprotective mechanism through its ability to transfer saturated FA into monounsaturated FA that are incorporated in lipids. In purified beta cells, SCD expression was induced by LXR- and PPARα-agonists, which were found to protect rat, mouse and human beta cells against palmitate toxicity. When their SCD was inhibited or silenced, the agonist-induced protection was also suppressed. A correlation between beta cell-SCD expression and susceptibility to palmitate was also found in beta cell preparations isolated from different rodent models. In mice with LXR-deletion (LXRβ-/- and LXRαβ-/-), beta cells presented a reduced SCD-expression as well as an increased susceptibility to palmitate-toxicity, which could not be counteracted by LXR or PPARα agonists. In Zucker fatty rats and in rats treated with the LXR-agonist TO1317, beta cells show an increased SCD-expression and lower palmitate-toxicity. In the normal rat beta cell population, the subpopulation with lower metabolic responsiveness to glucose exhibits a lower SCD1 expression and a higher susceptibility to palmitate toxicity. These data demonstrate that the beta cell susceptibility to saturated fatty acids can be reduced by stearoyl-coA desaturase, which upon stimulation by LXR and PPARα agonists favors their desaturation and subsequent incorporation in neutral lipids
    corecore