123 research outputs found

    Influence of deposition parameters on mechanical properties of sputter-deposited Cr2O3 thin films

    Get PDF
    Among the oxides, Cr2O3 exhibits the highest hardness value and a low coefficient of friction. These properties make chromium oxide an excellent coating material for tribological applications. Cr2O3 thin films were deposited by radio-frequency reactive magnetron sputtering at substrate temperature in the range 363-593 K. The hardness and elastic modulus of the films were measured by two complementary nanoindentation techniques to investigate the influences of the substrate temperature and the oxygen content in the sputtering gas. While the continuous stiffness data method provides information throughout the whole film thickness, nanoindentation combined with scanning force microscopy of the residual imprints allows visualization of pileup, cracking, and delamination from the substrate. Hardness values up to 32 GPa were obtained for substrate temperatures exceeding 500 K and oxygen contents between 15% and 25% of the total gas pressure. The films, obtained with these deposition conditions, showed good adhesion to silicon substrate

    Simultaneous measurements of magnetotail dynamics by IMP spacecraft

    Get PDF
    Changes in tail energy density during substorms in the magnetotail are given. In addition to plasma sheet thinnings seen prior to substorm onsets, a gradual decrease in plasma beta was detected in the deep tail which precedes onset and the more prominent plasma disappearance that typically accompanies it. The frequency of thinnings and the regions over which they occurred indicate that drastic changes in plasma sheet thickness are common features of substorms which occur at all locations across the tail

    The theory of pulsar winds and nebulae

    Full text link
    We review current theoretical ideas on pulsar winds and their surrounding nebulae. Relativistic MHD models of the wind of the aligned rotator, and of the striped wind, together with models of magnetic dissipation are discussed. It is shown that the observational signature of this dissipation is likely to be point-like, rather than extended, and that pulsed emission may be produced. The possible pulse shapes and polarisation properties are described. Particle acceleration at the termination shock of the wind is discussed, and it is argued that two distinct mechanisms must be operating, with the first-order Fermi mechanism producing the high-energy electrons (above 1 TeV) and either magnetic annihilation or resonant absorption of ion cyclotron waves responsible for the 100 MeV to 1 TeV electrons. Finally, MHD models of the morphology of the nebula are discussed and compared with observation.Comment: 33 pages, to appear in Springer Lecture Notes on "Neutron stars and pulsars, 40 years after the discovery", ed W.Becke

    Characterization of CrN/CrAlN/Cr2O3 Multilayers Coatings Synthesized by DC Reactive Magnetron Sputtering

    Get PDF
    The CrN/CrAlN/Cr2O3 multilayer coatings were deposited by reactive magnetron sputtering DC on 90CrMoV8 stainless steel under various oxygen flow rates. The structure and crystalline phases are characterized by the x-ray diffractometer. Through SEM, a dense and coherent is revealed in CrN/CrAlN/Cr2O3 multilayer coatings. The friction and wear behaviors obtained with the ball-on-disc test show that all multilayer films exhibit a good wear resistance, especially the one with an oxygen flow rate of 10 sccm. Nevertheless, in sea water the film without a top layer of Cr2O3 have the lowest coefficient of friction. This behavior is attributed to the interfacial strengthening and the existence of the upper passivation layer Cr2O3. Adding to that, the film obtained under an oxygen flow rate of 10 sccm show the lowest grain size and the maximum hardness and elastic modulus could Respectively, 45 and 417 GPa.Région Bourgogn
    • …
    corecore