688 research outputs found

    Configuration design studies and wind tunnel tests of an energy efficient transport with a high-aspect-ratio supercritical wing

    Get PDF
    The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded

    Wing analysis using a transonic potential flow computational method

    Get PDF
    The ability of the method to compute wing transonic performance was determined by comparing computed results with both experimental data and results computed by other theoretical procedures. Both pressure distributions and aerodynamic forces were evaluated. Comparisons indicated that the method is a significant improvement in transonic wing analysis capability. In particular, the computational method generally calculated the correct development of three-dimensional pressure distributions from subcritical to transonic conditions. Complicated, multiple shocked flows observed experimentally were reproduced computationally. The ability to identify the effects of design modifications was demonstrated both in terms of pressure distributions and shock drag characteristics

    Wind tunnel and analytical investigation of over-the-wing propulsion/air frame interferences for a short-haul aircraft at Mach numbers from 0.6 to 0.78

    Get PDF
    Results of analytical calculations and wind tunnel tests at cruise speeds of a representative four engine short haul aircraft employing upper surface blowing (USB) with a supercritical wing are discussed. Wind tunnel tests covered a range of Mach number M from 0.6 to 0.78. Tests explored the use of three USB nozzle configurations. Results are shown for the isolated wing body and for each of the three nozzle types installed. Experimental results indicate that a low angle nacelle and streamline contoured nacelle yielded the same interference drag at the design Mach number. A high angle powered lift nacelle had higher interference drag primarily because of nacelle boattail low pressures and flow separation. Results of varying the spacing between the nacelles and the use of trailing edge flap deflections, wing upper surface contouring, and a convergent-divergent nozzle to reduce potential adverse jet effects were also discussed. Analytical comparisons with experimental data, made for selected cases, indicate favorable agreement

    Exercises in reacting to sensory imagery and words carrying emotional overtones

    Get PDF
    This paper contains an outline of study for hearing impaired children to help them learn how to form and react to sensory imagery

    Effects of relative humidity on aerosol light scattering in the Arctic

    Get PDF
    Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σ<sub>sp</sub>(λ) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor <i>f</i>(RH, λ) is the key parameter to describe the RH effect on σ<sub>sp</sub>(λ) and is defined as the RH dependent σ<sub>sp</sub>(RH, λ) divided by the corresponding dry σ<sub>sp</sub>(RH<sub>dry</sub>, λ). During our campaign the average <i>f</i>(RH=85%, λ=550 nm) was 3.24±0.63 (mean ± standard deviation), and no clear wavelength dependence of <i>f</i>(RH, λ) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded <i>f</i>(RH, λ) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor <i>g</i>(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, <i>g</i>(RH=85%) values to be 1.61±0.12 (mean±standard deviation). No clear seasonal shift of <i>f</i>(RH, λ) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of <i>f</i>(RH, λ). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location

    Latent Period and Transmission of “Candidatus Liberibacter solanacearum” by the Potato Psyllid Bactericera cockerelli (Hemiptera: Triozidae)

    Get PDF
    "Candidatus Liberibacter solanacearum" (Lso) is an economically important pathogen of solanaceous crops and the putative causal agent of zebra chip disease of potato (Solanum tuberosum L.). This pathogen is transmitted to solanaceous species by the potato psyllid, Bactericera cockerelli (Ĺ ulc), but many aspects of the acquisition and transmission processes have yet to be elucidated. The present study was conducted to assess the interacting effects of acquisition access period, incubation period, and host plant on Lso titer in psyllids, the movement of Lso from the alimentary canal to the salivary glands of the insect, and the ability of psyllids to transmit Lso to non-infected host plants. Following initial pathogen acquisition, the probability of Lso presence in the alimentary canal remained constant from 0 to 3 weeks, but the probability of Lso being present in the salivary glands increased with increasing incubation period. Lso copy numbers in psyllids peaked two weeks after the initial pathogen acquisition and psyllids were capable of transmitting Lso to non-infected host plants only after a two-week incubation period. Psyllid infectivity was associated with colonization of insect salivary glands by Lso and with Lso copy numbers >10,000 per psyllid. Results of our study indicate that Lso requires a two-week latent period in potato psyllids and suggest that acquisition and transmission of Lso by psyllids follows a pattern consistent with a propagative, circulative, and persistent mode of transmission
    • …
    corecore