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NOMENCLATURE

nondimensional speed of sound

wing aspect ratio, —
o

wing span,m

DCn drag coefficient,
U

Cn induced drag coefficientui

Cn shock drag coefficient
S

_*
Cr? force vector coefficient,

Cft section drag coefficient

eg section lift coefficient

Cr lift coefficient,

Cr exposed wing lift coefficient,
exp d qQS

Cn pressure coefficient,
" a

— quarter chord, m

D drag

dA differential area, m2

e span efficiency factor,
7T/RQ).

exper expenmental

F force vector

L lift

111



MQ free-stream Mach number

A/£ Mach number normal to a local sweep line

n . unit normal vector

p local static pressure, n/m2

po free-stream static pressure, n/m2

qo free-stream dynamic pressure, — pot/o
2,n/m2

Re^ ., Reynolds number based on mean aerodynamic chord

5 reference area, m2

z? nondimensional velocity vector

u,v,w nondimensional velocity components, — , etc.
o

U, V, W velocity components, m/sec

UQ reference free-stream velocity, m/sec

x,y,z coordinate directions

a angle of attack, deg

7 ratio of specific heats

ACr> incremental drag coefficient due to compressibilityuc

7? wing semispan fraction

X wing taper ratio

A wing sweep, deg

p nondimensional local density

po free-stream density, kg/m3

00 infinity conditions

* sonic conditions (calculated using streamwise Mach number)

IV



WING ANALYSIS USING A TRANSONIC POTENTIAL

FLOW COMPUTATIONAL METHOD

P A Henne
McDonnell Douglas Corp , Douglas Aircraft Co

and

R M Hicks
Ames Research Center

SUMMARY

This report summarizes an evaluation of a transonic, full potential flow, computational
method for wing analysis The ability of the method to compute wing transonic performance has
been determined by applying the method to several different wing designs Comparisons of
computed results have been made with both experimental data and results computed by other
theoretical procedures Both pressure distributions and aerodynamic forces were evaluated While
some inaccuracies were discovered, comparisons indicate that the method is a significant improve-
ment in transonic wing analysis capability In particular, the computational method generally
calculated the correct development of three-dimensional pressure distributions from subcntical to
transonic conditions Complicated, multiple shocked flows observed experimentally have been
reproduced computationally The ability to identify the effects of design modifications has been
demonstrated both in terms of pressure distributions and shock drag characteristics The method is
applicable to a wider variety of wing configurations, since it solves the full potential equation rather
than the small disturbance form of the equation

INTRODUCTION

The aerodynamic design of three-dimensional wings for transonic flight has, until recently,
been accomplished primarily by experimental methods Such methods are costly and time consum-
ing compared to theoretical methods However, the development of theoretical transonic methods
has been hampered by the complex mathematical character of such flow fields Recently, several
computational methods for three-dimensional transonic flows about wings have been developed.
This report summarizes an evaluation of Jameson's transonic potential flow solution (ref 1) applied
to several different wing designs The objective of the study was to determine the ability of the
method to predict transonic wing performance, to determine its range of validity, and to determine
faults and deficiencies Particular attention was directed toward the calculation of transonic drag
characteristics since such information is of primary importance in the design of efficient wing
configurations Using the present computational method a wing can be analyzed in about 1 week

The Jameson code solves the full potential equation Solutions such as that of Bailey and
Ballhaus (ref 2) solve a reduced form of this equation consistent with the assumptions of small



disturbances At the time this study was initiated, the intent was to evaluate both the Jameson code
and the Bailey and Ballhaus code. However, the available small disturbance code of Bailey and
Ballhaus solved an equation which did not include sufficient terms to adequately describe transonic
flow about wings with more than 20° to 25° sweep Improvements in this area have been investigated
more recently (refs. 3,4) and should provide an improved small disturbance theory for swept wing
analyses

COMPUTATIONAL METHOD

The three-dimensional computational method evaluated in this study is the transonic, potential
flow solution of Jameson (FLO22) (ref 1) The method assumes inviscid, adiabatic, and irrotational
flow about three-dimensional wings These assumptions are equivalent to assuming isentropic flow.
The entropy change through shock waves is neglected The assumption of irrotational flow leads to
the existence of a velocity potential, 0. The nondimensional velocity components are given by the
following derivatives of <j>

" = Zjr=^ (2)

^>-^-=1>z (3)
uo

The governing equation for transonic potential flow is wntten as

(a2 - u2 )4>xx + (a2 - v2 )<f>yy + (a2 - w2 )<j>zz - 2uv^y - 2vw<t>yz - 2uw<j>xz = 0 (4)

where a2 is the square of the nondimensional local speed of sound given by

°2 = 7TJ + ^ d - M 2 - v 2 - w 2 ) (5)Mo 2

The Jameson code solves equation (4) for 0 at a discrete set of mesh points in the space about
a wing. Successive line over-relaxation procedures are used to solve a finite difference equation
simulating the governing, nonlinear, differential equation The solution is accomplished in a
computational space defined by unwrapping and flattening the wing surface with a sheared-
parabohc transformation. Equal mesh spacing in the computation plane provides a high concentra-
tion of mesh points near the leading edge and a low concentration of points near the trailing edge in
the physical space. The mesh in the physical space is shown in figure 1 . The concentration of mesh
points near the leading edge is a numerical advantage, while the sparse distribution of mesh points
near the trailing edge is a disadvantage The details of the finite difference solution scheme are
beyond the scope of this report and can be found elsewhere in the literature (refs 1 ,5)



The original Jameson code used a first-order accurate finite difference scheme to impose the
plane of symmetry boundary conditions Dunng the course of this study a second-order accurate
boundary condition scheme became available Computed results with the first boundary condition
are labeled with an (L), and results with the second boundary condition are labeled (H) Using both
schemes, several solutions were computed for comparison purposes and will be presented

An important aspect of solution accuracy with such numencal methods is the number of mesh
points. Table I summarizes a description of the meshes used in this study Each of the coarser
meshes was used to converge the solution and provide an initial solution for the next finer mesh.
Included in the table are the number of iterations typically required to achieve a satisfactory
residual or error level Definition of an adequate error level is subjective and depends upon the type
of study being earned out For the present study, the number of some points in the mesh and the
level of the circulation were used in addition to residual level as indications of solution convergence
The solution was judged to be sufficiently converged when the rate of change of these parameters
became small, typically, this rate was significantly less than 0 1% per iteration near convergence

The three-dimensional transonic flow results presented in this report were calculated on the
NASA-Ames CDC-7600 computer. Most of the calculations were completed in 2 weeks Nearly
100 flow solutions were computed, and no programming logic problems or solution convergence
problems were encountered

EVALUATION OF AERODYNAMIC FORCES

Although the solutions are inviscid, induced drag and shock drag can be calculated subject to
the assumptions of irrotational flow Since the calculated flow is three-dimensional and lifting, a
vortex wake extends from the wing to downstream infinity and introduces vortex or induced drag.
The method also calculates flow discontinuities representing shock waves Despite the assumption
of isentropic flow, however, shock drag can be evaluated from isentropic equations as shown in
reference 6 The existence of isentropic shock drag is a result of not conserving momentum normal
to the shock surface The momentum of the flow through an isentropic shock is increased, that is,
an isentropic shock introduces an upstream or thrust force acting on the system within the flow. In
an unbounded, /wo-dimensional isentropic flow the net drag force on the system (shock plus body)
within the flow must be zero. Hence, the thrust introduced at the shock discontinuity must be
balanced by a drag of equal magnitude on the body In an unbounded, three-d\mensiona\ isentropic
flow the net drag force is not necessarily zero If a wing in the flow is lifting, a vortex wake
introduces induced drag Hence, the net drag force on a three-dimensional system (shock plus body)
within an isentropic flow is induced drag If shock waves are present, then the drag on the body
includes both induced drag and shock drag The shock drag just balances the thrust introduced by
the isentropic shocks, and the net drag on the system remains the induced drag

Traditionally, in viscid lift and drag forces are evaluated by integrating surface pressure
distributions However, off-the-body momentum control volume integrations are advantageous to
flow solutions utilizing points in the field Since the flow at each mesh point is computed dunng the
solution process, this information is readily available for any integration scheme Reference 8
describes applications of such an approach for airfoil analyses



A control volume integration is particularly attractive for computed three-dimensional tran-
sonic potential flows since control volumes can be constructed to isolate induced drag and shock
drag This separation is accomplished by using the characteristics of isentropic shock waves
discussed earlier For three-dimensional isentropic flows, a control volume enclosing both the body
and any shock waves can only identify induced drag, Cj),. On the other hand, a control volume
enclosing just the shock waves can only identify the thrust introduced by the isentropic shock
Considering figure 2, the momentum equation for steady, inviscid flows can be written as

(6),
(l/2)p0t/0

25

For the present study the forces are limited to lift and drag, and Cp can be written as

Equation.(6) can be split by finding the scalar product in the i and k directions. This operation
gives

(^n A •** A1 A
-2-k + pw • k j - nCL = ~ I Ql) l~£ k + />"" • * / • n ^ (8)

o «

and

-, ff /r \
> n d A ~ (9)

If the control volume surface is collapsed to the surface of the body, the boundary condition
requires u • n = 0 and equations (8) and (9) reduce to the more familiar surface pressure integrals

The momentum analysis leading to equation (6) is sufficiently general to account for the
effects of any net mass flux within the control volume. Hence, any nonconservation of mass due to
numerical differencing or convergence tolerances can introduce a fictitious momentum increment
that is undesirable The net force on a mass source or sink within a control volume can be shown to
be the mass flux multiplied by the free-stream velocity This force acts in the free-stream or thrust
and drag direction. To correct for this force, equation (9) can be adjusted by

AC£> = I" ff P« ' « cU (10)

to give a corrected drag equation written as

x, _ 2 C 1P A i •>/••*• A i\l A
-y- / + pu(u -i- 1) • n (11)

A control volume integration based on equations (8) and (11) was evaluated in the transonic
potential flow code The results of these evaluations are described in the section entitled



Comparison of Calculated and Experimental Aerodynamic Forces Figure 3 illustrates the arrange-
ment of two different control volumes used for the integration Control volume surface A was used
to evaluate equations (8) and (11) for lift and induced drag By adding surface B to surface A the
wing is excluded from the control volume Only the shock wave or waves remain in the control
volume. Equation (11) then provides an evaluation of the isentropic shock thrust which has the
same magnitude but opposite sign as the shock drag, Q),, felt by the wing

CASE GEOMETRY DESCRIPTIONS

Six wing geometries were selected for analysis, including both simple and complicated designs
The simple wing configurations provide fundamental comparisons with other theoretical methods,
while the more complicated wing designs provide a number of different comparisons with experi-
mental and other theoretical results

Table II is a summary of the characteristics of each wing case. Cases 1 and 2 are unswept,
untapered, and untwisted wings with an aspect ratio of 10. The airfoil section is an NACA 0010 for
case 1 and an NACA 0020 for case 2 While no experimental results are known to exist for these
geometries, the wings provide reasonably two-dimensional flow in the center of the wing where
comparisons are made between computed three-dimensional results and results from proven two-
dimensional methods (ref 9) Case 3 is a swept, tapered wing that was tested as a wing-out-of-a-wall
by the NACA (ref 10). The wing has an NACA 64, 212 airfoil section normal to the leading edge.
Case 4 is a swept, tapered, and twisted wing tested by Douglas Aircraft Company The wing has
conventional type airfoil sections Cases 5 and 6 are also swept, tapered, and twisted wings but have
supercritical airfoil sections These wings were tested in a cooperative program between NASA-
Ames Research Center and the Douglas Aircraft Company. Cases 5 and 6 have the same planform
but have different airfoil sections The leading edge of case 5 was modified to develop the airfoil
sections for case 6.

Cases 4, 5, and 6 are all low-wing designs tested with fuselages and aft sting arrangements
Since the computational method is for wings alone, the exposed wings were used for these cases
The geometries were set up with the wing-fuselage intersection translated to the centerhne of the
computational mesh While this representation does not provide the correct wing span, the side of
the fuselage and fillet is reasonably flat above the wing, and the wall boundary condition provides
an approximate modeling of this area It must be recognized, however, that fuselage flow-field
disturbances due to incidence and cross section are not included in the computational method

For the wings with available experimental results, a boundary-layer displacement thickness was
added to the input geometries for the computational methods The boundary layers were computed
at one subcntical condition and were frozen for all other conditions The Cebeci two-dimensional
boundary-layer method (ref 11) was used in conjunction with the Garabedian and Korn two-
dimensional flow solution (ref 9) and simple sweep theory The displacement thickness for each
defining airfoil section was computed in a strip fashion and modified by an empirical spanwise
weighting factor to account for three-dimensional effects This boundary-layer representation is a
crude attempt to include viscous effects in the computed flow solutions Such measures may not be
required for wings with conventional airfoil sections, but wings with supercritical airfoil sections are



substantially affected by the boundary-layer growth Any theoretical analysis involving supercritical
airfoils should include some method of accounting for boundary-layer displacement effects

COMPARISON OF CALCULATED AND EXPERIMENTAL
PRESSURE DISTRIBUTIONS

Case 1 Figure 4 illustrates computed pressure distributions for case 1 at three different Mach
numbers and 0° angle of attack The three-dimensional results are for the centerhne (17 = 0) airfoil
section The two-dimensional pressure distributions, computed on the same airfoil section using the
Garabedian-Korn two-dimensional solution, agree reasonably well at all three Mach numbers The
computed shock position in the Jameson solution is farther forward than in the two-dimensional
result A small discrepancy in pressure level indicated near the trailing edge is probably related to
the larger mesh spacing near the trailing edge in the three-dimensional program

Figure 5 presents pressure distributions calculated by three methods for the same wing The
three-dimensional result is for M = 0 8 and 2° angle of attack Again the pressure distribution along
the centerhne (TJ = 0) is shown for the Jameson three-dimensional result The two two-dimensional
results were computed for nearly the same section lift coefficient as the three-dimensional pressure
distribution The Jameson two-dimensional solution is analogous to the three-dimensional solution
in that a parabolic mapping is used rather than a circle plane mapping as in the Garabedian-Korn
solution. While minor differences in the pressure distributions are noted, the agreement between the
three different solutions is good This comparison indicates that numerical differences can account
for approximately 3% of chord in shock position and 0 04 difference in pressure coefficient

Case 2 Case 2 is similar in planform to case 1 but has an NACA 0020 airfoil section Figure 6
presents computed pressure distributions for this 20% thick wing case at three different Mach
numbers and 0° angle of attack Again, the three-dimensional results are for the centerhne (77 = 0)
airfoil section The results shown in this figure are very similar to those shown in figure 4 for the
10% thick wing No apparent sensitivity to airfoil thickness is noted in these cases

Case 3 Case 3 is the first swept wing analyzed Figures 7, 8, and 9 present a series of
comparisons between experimental and computed pressure distributions In figure 7 the free-stream
Mach number is 0.6 and the angle of attack is 4° The flow is entirely subsonic at these conditions
Figure 8 is for 0 8 Mach number and 4° angle of attack, and at this Mach number the upper surface
pressures indicate some supersonic flow In figure 9 the Mach number has been increased io 0 85
and a significant amount of supersonic flow exists on the upper surface The computed and
experimental pressure distributions agree reasonably well at all three conditions Figure 10 illus-
trates the computed and experimental shock location for the flow conditions shown in figure 9. The
shock location chosen was the chordwise location of the midpoint of the shock pressure rise
Considerable unsweeping of the shock is apparent at both the wing root and wing tip Even in the
midwing location the shock sweep is less than the sweep of a constant percent chord line

Figure 11 presents a comparison of pressure distributions for the 55% semispan location of this
wing at Mo = 0.85 and 4° angle of attack The computed three-dimensional distribution has a
section lift coefficient of 0 55 The two-dimensional results were computed using simple sweep
theory and a quarter-chord normal airfoil section from the three-dimensional wing geometry



including the addition of displacement thickness The two-dimensional pressure distributions have
an equivalent three-dimensional section lift coefficient of 0 55. The three-dimensional computed
shock position is further aft than the two-dimensional location The different shock position is the
result of planform effects on shock sweep as shown in figure 10. The effective sweep is less than the
quarter-chord sweep The experimental pressures do not show the flow acceleration along the upper
surface that is evident in all the computed pressures The lack of acceleration could be related to
shock boundary-layer interaction or to poor model surface contour quality (ref 7)

Case 4 Figures 12 through 16 present a series of pressure distribution comparisons for case 4.
Figure 12 compares computed and experimental pressure distributions for 0.5 Mach number and 4°
angle of attack The flow field is almost entirely subsonic at these conditions The agreement
between computed and experimental results is good except for the aft pressure recovery In this
region the computed pressures indicate a greater recompression than was measured, which could be
attributed to several sources Since the mesh spacing is rather large near the trailing edge, some of
the extra recompression could be evidence of numerical error The boundary-layer displacement
thickness could also be a problem near the trailing edge The real three-dimensional boundary layer
near a swept trailing edge is known to exhibit significant crossflow The two-dimensional analysis
used to compute the boundary-layer displacement thickness added to the wing geometry does not
provide such details and could lead to the extra recompression near the trailing edge. Finally, it
must be remembered that this case was tested with a fuselage The fuselage and its associated fillet
tend to elevate the local flow velocities This effect is likely present in the measured pressures and
could be another source of the difference between the computed and experimental pressures.

Figure 13 compares computed and measured pressures at 0 7 Mach number and 4° angle of
attack. At these conditions the wing flow field near the leading edge is supersonic Both the
computed and experimental pressures indicate a region of sharp recompression through a shock

In figure 14 the Mach number has been increased to 0 8 at 4° angle of attack At these
conditions a significant amount of supersonic flow is indicated along the upper surface The
computed shock position for the outboard stations appear to be 10 to 15% of chord further
forward than the experimental pressures show Figures 15 and 16 show similar results for 0.82 and
0.85 Mach numbers and 3° and 2° angles of attack, respectively While the shock position is not
correct for this case, the growth of the supersonic region and the level of pressure in the supersonic
region are reasonably well computed

In an attempt to identify the cause for the discrepancy between the calculated and experimen-
tal shock locations, an analysis of the fuselage flow field was made An axisymmetnc representation
of the fuselage for this model was used to calculate an axisymmetnc off-body flow field in the
region of the wing This calculation was accomplished using the Axisymmetnc Douglas-Neumann
Potential Flow Program (ref 12) Compressibility effects were accounted for with a Goethert type
correction This modeling has been shown to be adequate for subcntical axisymmetnc flows such as
this fuselage case. The calculated off-body Mach-number distnbution at the wing half-chord
location is shown in figure 17 The results are shown for the fuselage with and without a closed
afterbody. The close proximity of the wing to the afterbody subjects the wing to Mach numbers
elevated by approximately 0 01. Hence, for a wing-body free-stream Mach number of 0.85, the wing
is essentially flying in a Mach number 0 86 flow. This effect could account for some of the
discrepancy in shock location for this case



Case 5 Figures 18 through 22 present a series of pressure distribution comparisons for case 5,
a supercritical wing design. The results shown in figure 18 are for a Mach number of 0 5 and an
angle of attack of 2 06°. Three different solutions are shown The three-dimensional F-N
(Friedman-Neumann) results, shown as a dashed line, were computed using a surface source-internal
vorticity panel method (ref 13) for incompressible potential flow The three-dimensional F-N flow
was calculated for the wing-body geometry. Mach-number effects were approximated using the
Goethert correction. Jameson results are shown for both wall boundary condition schemes. The
higher order scheme resulted in a lower peak negative pressure coefficient along most of the span,
an effect particularly evident at the station next to the fuselage The agreement between the
different flow solutions and the expenmental results is good.

Figure 19 compares computed and expenmental results for 0 7 Mach number and 1 8° angle of
attack At this condition the flow along the upper surface near the leading edge is supersonic. A
significantly stronger suction peak is indicated by both the Jameson solution and the experimental
results for the 25% semispan station

The results shown in figure 20 are for a Mach number of 0 75 and an angle of attack of 2 2°.
At these conditions the size of the sonic region has increased as the shock wave has begun to move
downstream The section at 25% semispan continues to show a higher suction peak and a stronger
shock than other sections on the wing.

The Mach number has been increased to 0 8 for the results shown in figure 21 At these
conditions, a complicated shock system is observed in both the computed and expenmental results.
The accuracy of the wall boundary condition is shown to have a significant effect on the computed
results for such conditions Large spanwise velocity gradients at this forked shock condition seem to
aggravate the wall boundary condition accuracy problem The higher order solution shows a more
highly defined double shock system at the inboard sections

Figure 22 compares results at 0 84 Mach number and 1 85° angle of attack. At these
conditions the sonic region extends over a major portion of the upper surface The inboard
pressures continue to indicate a double shock At the outboard stations the pressures indicate a
supercntical flow with a single shock At this condition the upper surface boundary layer is likely to
be separated or near separation at the midspan stations The lack of traihng-edge pressure recovery
in the experimental results compared to the previous data is evidence of this effect Again the
accuracy of the wall boundary condition is shown to have a significant effect at these highly
supercritical conditions

Figures 23 and 24 compare computed and expenmental shock locations for the same
conditions as shown in figures 21 and 22, respectively The heavy lines are used to emphasize the
shock pattern in each case While the shock positions do not agree exactly, the basic character is
computed reasonably well The double shock companson is especially encouraging considenng that
the computed solution is for a wing alone while the expenmental results are for a wing-body
combination

Case 6 Figures 25 through 29 present a senes of pressure distribution compansons for case 6,
a modification of the case 5 supercntical wing design Again a range of Mach numbers is presented.
The results shown in figure 25 are for a Mach number of 0 5 and an angle of attack of 2 0° Good
agreement is illustrated except for the level of the outboard suction peak The expenmental results
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for the outboard part of the wing indicate a sharp suction peak The experimental peak Cp has
essentially the same level as is shown in figure 18 for case 5 Using proven two-dimensional methods
(e.g., Garabedian-Korn) the leading edge of the case 6 geometry was designed to significantly reduce
the peak Cp. The reduction is noted between the computed three-dimensional results shown in
figures 18 and 25 but not in the expenmental results at the outboard stations This comparison
suggests that the contours of the case 6 model outboard leading edge may be inaccurate.

Figure 26 compares computed and expenmental results for the case 6 geometry at 0.7 Mach
number and 2.0° angle of attack. Again the agreement between the two results is good except for
the outboard suction peak With the Mach number increased to 0 75 (fig 27), however, the flow
near the upper surface leading edge is supersonic. A shock wave terminating this region is
particularly apparent at the 25% semispan station.

Figure 28 presents results for 0.8 Mach number and 2 0° angle of attack At these conditions
the double shock character of the flow is apparent in both the computed and expenmental results.
If the results in figure 28 are compared to the results for case 5 in figure 21, a significant reduction
in the forward shock strength is noted. The largest effect is noted at the 25% semispan station.

Figure 29 presents a comparison of results at 0.84 Mach number and 2.0° angle of attack. The
double shock character of the inboard flow field is identified reasonably well by the computed
results At these conditions, the outboard expenmental results suggest significant boundary-layer
separation as indicated by the lack of trailmg-edge pressure recovery for the 65 and 85% semispan
stations Still, agreement between calculated and measured results is good.

Figures 30 and 31 compare calculated and expenmental shock positions for the conditions
shown in figures 28 and 29, respectively The basic character of the expenmental shock pattern is
reasonably well calculated for this case

A direct comparison of cases 5 and 6 is presented in Figure 32 The measured and calculated
pressure distnbutions at the 25% semispan station are shown for 0 7 Mach number and approxi-
mately 2.0° angle of attack The large reduction in peak Cp and the attendant shock strength is
indicated in both the calculated and the expenmental results The peak normal Mach number (M±)
for case 5 is 1.43 The peak was reduced to a level near 1 1 for case 6 The leading-edge section
profiles for cases 5 and 6 are shown in figure 32 for the 25% span station.

COMPARISON OF CALCULATED AND EXPERIMENTAL
AERODYNAMIC FORCES

Case 1 The case 1 lift curve, CL versus a, computed by three different theoretical methods, is
shown in figure 33 The Mach number is 0 5 The Giesmg results were computed using a vortex
lattice lifting surface method (ref 14) The three-dimensional F-N results were computed using an
incompressible potential flow method descnbed in the previous section. Results computed by the
Jameson code are also shown. The differences found in this companson are charactenstic of the
different methods used to compute the flow solutions The Giesmg vortex lattice calculation is a
lifting surface theory and, hence, does not 'include lift effects due to airfoil thickness The
three-dimensional F-N solution and the Jameson solution, on the other hand, utilize exact boundary



conditions to represent the wing geometry, a practice which provides for thickness effects and
results in a higher lift curve slope

Both the lower order and higher order wall boundary conditions were used in the Jameson
calculations for this geometry at 0 5 Mach number Essentially no effect of the order of the
boundary condition was found Since the spanwise velocity gradients are essentially zero except
near the tip of this wing geometry, the result reinforces the idea that the effects of the higher order
scheme are most significant when spanwise velocity gradients near the root are large Little
difference is shown between the surface pressure integral results (SPI) and the control volume
integral results (CVI)

The results shown in figure 33 are completely inviscid Since viscosity effects tend to reduce
lift at a given angle of attack, the lifting surface results usually compare well with experimental data
because of the opposing effects of thickness and viscosity on lift This situation contributes to the
requirement that some modeling of boundary-layer growth should be included in analyses using
exact airfoil or wing boundary conditions

Figure 34 illustrates the calculated spanwise variation in section lift coefficient, eg, for case 1
at 0 5 Mach number and 0.5 CL Results from the same three theoretical methods are shown, with
the elliptical distribution shown for comparison purposes The lift distributions computed by all
three methods agree very well The variation from elliptical implies that the induced drag for such a
distribution should be somewhat greater than C/,2 /irAR

The computed induced drag polars for this geometry at Mach 0.5 are shown in figure 35 for all
three theoretical methods The Giesing results were computed using a Trefftz-plane drag integration
procedure, while the results from the other two theoretical methods were computed using control
volume integrations for induced drag The Jameson induced drag polar seems to be optimistic
compared to the other results If e is defined as Q,2IttARCj) , an e of 0.94 to 0 96 seems more
realistic than the value near 1 0 predicted by the Jameson method The higher value of e computed
by the Jameson solution could be associated with lack of spanwise loading definition near the wing
tip compared to the three-dimensional F-N and Giesing solution

Figure 36 presents the computed two-dimensional and three-dimensional shock drag character-
istics for the case 1 geometry at 0° angle of attack The drag for the two two-dimensional solutions
was computed from surface pressure integrals for the NACA0010 airfoil section The three-
dimensional results were computed using control volume integration and have been corrected by an
increment in drag level defined so that the shock drag with entirely subcntical flow is zero. For this
geometry, the level correction was on the order of 0001 It should be noted that the three-
dimensional solution for this comparison was computed using the lower order wall boundary
condition. Results computed for later geometries suggest that the shock drag level error is much
improved with the higher order scheme. Nonetheless, the present comparison between two-
dimensional and three-dimensional results indicates the basic transonic drag rise character is
reasonably well computed by the three-dimensional code. Compared to the two-dimensional results,
the level of the three-dimensional shock drag is somewhat reduced, which is appropriate since the
wing sections near the tip experience less shock drag than a two-dimensional airfoil.

Case 2 Figure 37 illustrates the computed shock drag characteristics for case 2 at 0° angle of
attack The two-dimensional and three-dimensional results shown are similar to those presented in
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figure 36 for case 1 A correction was also applied to these results so that the subcntical shock drag
was zero. Comparison of figure 37 with figure 36 reveals the expected decrease in drag divergence
Mach number with increasing airfoil thickness

Case 3 A comparison of experimental and calculated lift curves for case 3 is shown in
figure 38 for Mach numbers of 0 6, 0 8, and 0 85 Good agreement exists between the experimental
and calculated results. Deviation at the higher angles is probably due to viscous effects Little
difference is indicated between the computed results using surface pressure integration (SPI) and
control volume integration (CVI)

Figures 39 and 40 present compansons of spanwise section lift distributions at 0 6 and 0.8
Mach numbers, respectively The computed results display essentially the same character as the
experimental distributions.

The calculated induced drag polars for case 3 are shown in figure 41 These results were
computed using the control volume integration Since this wing has no twist, the zero induced drag
value at CL = 0 is correct It is interesting that essentially no Mach number effect on the induced

, drag polar is calculated for this geometry

Figure 42 presents total drag (induced plus shock) polars for this geometry The left-hand
polars are the result of surface pressure integration. Since drag levels less than the induced drag of
an elliptical loading are unrealistic, the drag level errors in these results are apparent The right-hand
polars were computed using the control volume integration The separate calculation of shock drag
identified a level correction used to set subcntical shock drag to zero, and the resulting total drag
polar is much more reasonable.

A comparison of drag rise characteristics is shown in figure 43, with curves shown for C^'s of
0.0, 0.2, and 0 4. The computed results were matched to the experimental data between 0 6 and 0 7
Mach number to compensate for viscous effects and tunnel interference effects. While differences
are noted between the computed and experimental drag rise characteristics, the general agreement is
reasonable This result is particularly encouraging in light of the fact that the computed result is
essentially inviscid and shock boundary-layer interaction and the attendant effects on drag are
ignored

Figure 44 presents a comparison of two-dimensional and three-dimensional calculated results
relative to the measured drag nse for a C^ of 0 4 The two-dimensional drag rise was computed
using simple sweep theory and a quarter-chord normal airfoil section for this wing The Mach
number difference shown between the two-dimensional and three-dimensional drag rise curves
represents the calculated reduction in drag divergence Mach number due to three-dimensional
effects These three-dimensional effects can be recognized in figure 10 as considerable unsweeping
of the shock at both the root and tip

Case 4 Case 4 is the first geometry analyzed that was tested as a wing-fuselage combination
It must be remembered that the flow solutions for this and the following geometries were computed
using a plane of symmetry at the wing-fuselage intersection

Figure 45 illustrates the spanwise distribution of section lift coefficient for this geometry at
0 85 Mach number One set of test data is for the same angle of attack as the computed results, and
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a second set of data from another test is for nearly the same exposed wing CL In either case the
computed distribution agrees reasonably well with the experimental results

Figure 46 illustrates computed induced drag polars for this configuration Again, these results
were computed with the control volume integration Both higher and lower order wall boundary
condition solutions are included, and little difference is noted between the results for these two
representations As was noted in the case 3 results, the Mach number effect on induced drag is again
negligible This particular geometry has a significant amount of aerodynamic twist as the computed
drag level at Q, = 0 indicates

Figure 47 compares experimental and computed drag rise characteristics for case 4. The results
are presented as a compressibility drag coefficient increment, AC/),, This increment is taken
relative to a subcntical Mach number drag level The curve is presented for a total (wing plus
fuselage) Cr of 0 5 To make this comparison, the Jameson Cr ,, was augmented by a

CXp Q

Cr/Cr ,, ratio computed by the Giesing vortex lattice method The Jameson results werecxp Q
co.mputed using the higher order wall boundary condition The shock drag computed with the lower
order scheme proved to be inconsistent for this and the succeeding complicated wing geometries
(The improvement due to the higher order scheme is discussed in detail for case 5) Both surface
pressure integration and control volume integration results are shown in figure 47. The calculated
drag rise charactenstics appear to be premature by about 0 02 in Mach number

Case 5 Figure 48 presents a comparison of section lift distributions for case 5 Four
theoretical results along with experimental data for this geometry are shown for 0 5 Mach number
and 2.06° angle of attack The theories used were Giesing vortex lattice, three-dimensional F-N, and
Jameson three-dimensional (H) and three-dimensional (L) It should be noted that the wing
geometnes, including the boundary-layer displacement surface, for the Jameson solution and the
three-dimensional F-N solution were identical The difference between these two solutions in the
outboard region of the wing is likely to be associated with numerical accuracy of one or both of
these solutions The outboard pressure distributions shown in figure 18 for this case indicate that
less aft loading is computed by the, Jameson solution than by the three-dimensional F-N solution, a
characteristic which accounts for the difference in section lift coefficient The reduced aft loading
of the Jameson solution could be associated with reduced mesh definition near the trailing edge
The fact that the Jameson solution agrees better with experimental results may be evidence of
compensating errors in representing the boundary layer and in the basic inviscid solution near the
trailing edge. An increment in eg is also noted between the (H) and (L) Jameson solutions This
increment is associated primarily with the difference in leading-edge suction peaks noted in
figure 18

Figure 49 compares section lift distributions for the same geometry at 0 8 Mach number and
2.2° angle of attack. As with the pressure distributions, a significant difference is noted between the
(H) and (L) Jameson section lift distributions for this geometry at these flow conditions The higher
order solution is closer to the experimental results

Figures 50 presents a comparison of the induced drag polars computed from control volume
integration Results are shown for both the lower order and the higher order wall boundary
condition, however, little difference is noted Again, no significant Mach number effect is apparent
in the induced drag polars.
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Figure 51, which shows the total drag polars, illustrates the beneficial effect of the higher
order wall boundary condition on the calculation of shock drag characteristics. The upper polars
are the pressure integration results using the lower order wall boundary condition As can be seen,
the drag levels relative to elliptical loading induced drag are unrealistic, and the Mach number trends
are inconsistent The lower polars are the pressure integral results using the higher order
boundary condition and show much improved characteristics The drag levels are greater than those
of an elliptical loading, and the Mach number effects seem more reasonable A similar improvement
is observed in the control volume integration results The shock drag calculated by control volume
integration requires a CD level correction of approximately 0.0002 for cases 5 and 6.

Figure 52 compares experimental and computed drag rise characteristics for this geometry
Again, the Jameson Q, ,, was augmented to account for fuselage lift carry-over Curves for twocxp Q
CL'S are shown Significant drag creep is noted before drag divergence for this configuration, with
greater creep shown by the experimental results than by the computed results This difference is
likely to be associated with viscous effects which are not included in the computed characteristics

Case 6 The geometry for case 6 is a relatively small leading-edge modification of case 5.
Consequently, little difference is noted in the lift and induced drag characteristics between cases 5
and 6. However, the modification was designed to alter the transonic flow development on the
upper surface in an attempt to reduce the drag creep shown in figure 52

Figure 53 compares the experimental and computed drag rise characteristics for case 6 Again,
the inviscid computed results tend to underpredict the experimental levels of drag creep A
significant reduction in creep is noted in both the experimental and computed characteristics for
these results compared to figure 52 at both 0 5 and 0 6 Q,

The difference between the drag levels of cases 5 and 6 is shown versus Mach number in
figure 54. This figure is a unique comparison of four different methods of evaluating drag
characteristics The experimental results include both force balance and wake rake measurements
made during the DAC/NASA-Ames cooperative wind-tunnel test program The computed results
include both the pressure integral and control volume integral First, the comparison indicates that
the computed differences have the right sign except at the high C^, high Mach number conditions,
where massive boundary-layer separation was observed experimentally. Secondly, the computed
differences generally are the correct magnitude The comparison is evidence that considerable
confidence is justified in using this computational method to develop and modify wing contours

CONCLUSIONS

The Jameson three-dimensional transonic potential flow program has been thoroughly eval-
uated Six different wing geometries, including both simple and complicated designs, have been
analyzed at numerous flow conditions Momentum control volume integrations were developed
which allowed the separate calculation of induced drag and shock drag Viscous effects were
roughly modeled using a subcntical, frozen, two-dimensional displacement thickness added to the
wing geometry Calculated aerodynamic characteristics have been compared to experimental results
and other theoretical results Favorable comparisons of both pressure distributions and aerodynamic
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forces indicate that the Jameson method is quite acceptable for transonic wing analysis The
following conclusions are emphasized

1 The ability to calculate the correct development of three-dimensional pressure distributions
from subcntical to transonic conditions has been demonstrated

2. The correct character of complicated, multiple-shock flows has been calculated by the
program

3. The calculated induced drag was found to be insensitive to Mach number for the types of
wings analyzed

4 The ability to identify the effects of design modifications has been demonstrated for both
pressure distributions and shock drag characteristics

5 The computer code proved reliable, no convergence problems were encountered in nearly
100 different flow solutions

The good agreement is particularly encouraging in light of the successful applications of an
essentially inviscid, wing-alone analysis to viscous, wing-body configurations

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 94035, February 22, 1978
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TABLE I - JAMESON PROGRAM MESH AND SOLUTION
CHARACTERISTICS

[Total computation time s 900 CPU sec on CDC-7600 Nominal
residual level ^5 OX 1(TS ]

Mesh

1
2
3

Mesh cells
NX, NY, NZ

48, 6, 8
96,12,16
192,24,32

Maximum number0

streamwise points
per airfoil surface

16
31
61

Span wise
stations
on wing

6
11
21

Iterations
(typical)

75
75
75

^Maximum number of streamwise points occurs at maximum
chord length station Streamwise points are reduced along tapering
chord
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TABLE II - CASE GEOMETRY CHARACTERISTICS

CASE PLANFORM SWEEP (c/4),deg AIRFOILS

NACA 0010

NACA 0020

3518
NACA 64!212

NORMAL
SECTION

35 CONVENTIONAL

32 SUPERCRITICAL

32

SUPERCRITICAL
(LEADING-

EDGE MODIFI-
CATION OF

CASE 5}
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PLANE OF
SYMMETRY

Figure 1 — Sheared parabolic coordinate system used in Jameson three-dimensional transonic flow
solution.

ARBITRARY
CONTROL VOLUME

SURFACE

Figure 2 — Momentum control volume and coordinate system
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CONTROL VOLUME A
• LIFT
• INDUCED DRAG

CONTROL VOLUME A + B
• SHOCK DRAG

Figure 3 — Momentum control volume used to calculate aerodynamic forces

GARABEDIAN (2 0)
JAMESON (3-D. n = 0 L)

NACA 0010
AR =10

A =0°

X =10

a =0°

40 60
PERCENT CHORD

Figure 4 — Comparison of calculated pressure distributions for DAC case I at three different Mach
numbers
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O WIND TUNNEL TEST

Figure 10 - Comparison of calculated and experimental shock position for DAC case 3

O WIND-TUNNEL TEST DATA
GARABEDIAN 2 D + SIMPLE

SWEEP THEORY
JAMESON 2 D + SIMPLE

SWEEP THEORY
JAMESONS-OIL)

t) =055
ce =055

M0=085

40 60
PERCENT CHORD

Figure 11 - Comparison of calculated and experimental pressure distributions for DAC case 3
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Z
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M0 » 0 85
AXISYMMETRIC FUSELAGE

DOUGLAS - NEUMANN + GOTHERT

NO AFTERBODY

NO AFTERBODY

FREE STREAM

4 6
SEMISPAN STATION

Figure 17 — Estimated spanwise variation of local Mach number due to fuselage nose and afterbody
for DAC case 4
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EXPERIMENTAL
SHOCK
LOCATIONS

•CALCULATED
SHOCK
LOCATIONS
REF JAMESON

3 DPGM

Figure 23.— Comparison of experimental and calculated shock locations for case 5 at MQ = 08

EXPERIMENTAL
SHOCK
LOCATIONS

CALCULATED
SHOCK
LOCATIONS

REF JAMESON
3 DPGM

Figure 24 - Comparison of experimental and calculated shock locations for case 5 at Mo = 0 84

37



£
3
c

o
CO

in
O

4>
tfl

8

Q
.o

c
o

X)

3
V3
cn
D

60
c

•!-»

U

u
o,

T3

CQ
T3
<U

•4-»

o

o
en

I

O
O

(3D

38



E
3
C

o

r-
o

3
u

co
4-»
3

4-1
C/3

E
3

0>
O.

c
5
15
.4̂

C

E
C
OJ
Q.
X

•o
c
«

*Ou

3
U

c
o

a
Eo

aa

39



JO
E
3
C

-i

03

o
•*J

03

Cfl
03o

Q

Co

•
(D
w

1

C
CD

E
(U
D.
X
U
•o

.23

o
C
O
en
C
03a
E
o
U
I

CN
2

40



-.8

E
3
C

o03

oo
O

<u
C/J

3
u
<
Q

U»

£
CW

C
g

•*-»
jo
C

1
(D

CO
C

co>
E

a
xa>

TD
C
aj

nl
"5

co

I
oo
CN

K
3

41



E
3
c

o

oo
O

t/3
w
o

CJ

</]

o
3

C
•4—*
C/J

•3
§

eo
C

03
•4-*

C

1-
(Ua,x
a>
•ac

—3
~3o
'o

I
CD
D.

E
o
U
I

42



EXPERIMENTAL
SHOCK
LOCATIONS

CALCULATED
SHOCK
LOCATIONS
REF JAMESON

3 DPGM

Figure 30.~ Comparison of experimental and calculated shock locations for case 6 at Mo = 08

EXPERIMENTAL
SHOCK
LOCATIONS

CALCULATED'
SHOCK
LOCATIONS
REF JAMESON

3 DPGM

Figure 31 - Comparison of experimental and calculated shock locations for case 6 at Mo = 0 84
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Figure 32 - Comparison of experimental pressure distributions for case 5 and case 6.
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Figure 33.- Calculated lift curves for DAC case 1
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Figure 34 — Calculated spanwise distribution of section lift coefficient for DAC case
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Figure 35 — Computed induced drag polars for DAC case 1
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Figure 36 - Calculated shock drag nse characteristics for DAC case 1
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Figure 37 - Calculated shock drag rise characteristics for DAC case 2
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Figure 38 — Comparison of calculated and experimental lift curves for DAC case 3
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Figure 39 — Comparison of calculated and experimental spanwise lift distribution for DAC case 3 at
0 6 Mach number
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Figure 40 - Comparison of calculated and experimental spanwise lift distribution for DAC case 3 at
0.8 Mach number
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Figure 41 - Calculated induced drag polar for DAC case 3
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Figure 42 — Comparison of calculated drag polars using surface pressure integration and control
volume integration for DAC case 3
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Figure 43 — Comparison of calculated and experimental drag rise characteristics for DAC case 3
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Figure 45 — Comparison of calculated and experimental spanwise lift distribution for DAC case 4 at
0 85 Mach number
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Figure 46 — Calculated induced drag polars using lower order and higher order wall boundary
condition for DAC case 4
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Figure 47.— Comparison of calculated and experimental drag rise characteristics for DAC case 4
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Figure 48.— Companson of calculated and experimental spanwise lift distributions at constant a
for DAC case 5 at 0 5 Mach number
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Figure 49 — Companson of calculated and experimental spanwise lift distributions at constant a.
for DAC case 5 at 0 8 Mach number
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Figure 52.- Comparison of calculated and experimental drag rise characteristics for DAC case 5
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Figure 53 — Comparison of calculated and experimental drag rise characteristics for DAC case 6
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