436 research outputs found
On the Calibration of a Size-Structured Population Model from Experimental Data
The aim of this work is twofold. First, we survey the techniques developed in
(Perthame, Zubelli, 2007) and (Doumic, Perthame, Zubelli, 2008) to reconstruct
the division (birth) rate from the cell volume distribution data in certain
structured population models. Secondly, we implement such techniques on
experimental cell volume distributions available in the literature so as to
validate the theoretical and numerical results. As a proof of concept, we use
the data reported in the classical work of Kubitschek [3] concerning
Escherichia coli in vitro experiments measured by means of a Coulter
transducer-multichannel analyzer system (Coulter Electronics, Inc., Hialeah,
Fla, USA.) Despite the rather old measurement technology, the reconstructed
division rates still display potentially useful biological features
Does shear wave ultrasound independently predict axillary lymph node metastasis in women with invasive breast cancer?
Shear wave elastography (SWE) shows promise as an adjunct to greyscale ultrasound examination in assessing breast masses. In breast cancer, higher lesion stiffness on SWE has been shown to be associated with features of poor prognosis. The purpose of this study was to assess whether lesion stiffness at SWE is an independent predictor of lymph node involvement. Patients with invasive breast cancer treated by primary surgery, who had undergone SWE examination were eligible. Data were retrospectively analysed from 396 consecutive patients. The mean stiffness values were obtained using the Aixplorer(®) ultrasound machine from SuperSonic Imagine Ltd. Measurements were taken from a region of interest positioned over the stiffest part of the abnormality. The average of the mean stiffness value obtained from each of two orthogonal image planes was used for analysis. Associations between lymph node involvement and mean lesion stiffness, invasive cancer size, histologic grade, tumour type, ER expression, HER-2 status and vascular invasion were assessed using univariate and multivariate logistic regression. At univariate analysis, invasive size, histologic grade, HER-2 status, vascular invasion, tumour type and mean stiffness were significantly associated with nodal involvement. Nodal involvement rates ranged from 7 % for tumours with mean stiffness <50 kPa to 41 % for tumours with a mean stiffness of >150 kPa. At multivariate analysis, invasive size, tumour type, vascular invasion, and mean stiffness maintained independent significance. Mean stiffness at SWE is an independent predictor of lymph node metastasis and thus can confer prognostic information additional to that provided by conventional preoperative tumour assessment and staging
Revisiting inconsistency in large pharmacogenomic studies
In 2013, we published a comparative analysis of mutation and gene expression profiles and drug sensitivity measurements for 15 drugs characterized in the 471 cancer cell lines screened in the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE). While we found good concordance in gene expression profiles, there was substantial inconsistency in the drug responses reported by the GDSC and CCLE projects. We received extensive feedback on the comparisons that we performed. This feedback, along with the release of new data, prompted us to revisit our initial analysis. We present a new analysis using these expanded data, where we address the most significant suggestions for improvements on our published analysis - that targeted therapies and broad cytotoxic drugs should have been treated differently in assessing consistency, that consistency of both molecular profiles and drug sensitivity measurements should be compared across cell lines, and that the software analysis tools provided should have been easier to run, particularly as the GDSC and CCLE released additional data. Our re-analysis supports our previous finding that gene expression data are significantly more consistent than drug sensitivity measurements. Using new statistics to assess data consistency allowed identification of two broad effect drugs and three targeted drugs with moderate to good consistency in drug sensitivity data between GDSC and CCLE. For three other targeted drugs, there were not enough sensitive cell lines to assess the consistency of the pharmacological profiles. We found evidence of inconsistencies in pharmacological phenotypes for the remaining eight drugs. Overall, our findings suggest that the drug sensitivity data in GDSC and CCLE continue to present challenges for robust biomarker discovery. This re-analysis provides additional support for the argument that experimental standardization and validation of pharmacogenomic response will be necessary to advance the broad use of large pharmacogenomic screens
Multigene prognostic tests in breast cancer: past, present, future
There is growing consensus that multigene prognostic tests provide useful complementary information to tumor size and grade in estrogen receptor (ER)-positive breast cancers. The tests primarily rely on quantification of ER and proliferation-related genes and combine these into multivariate prediction models. Since ER-negative cancers tend to have higher proliferation rates, the prognostic value of current multigene tests in these cancers is limited. First-generation prognostic signatures (Oncotype DX, MammaPrint, Genomic Grade Index) are substantially more accurate to predict recurrence within the first 5 years than in later years. This has become a limitation with the availability of effective extended adjuvant endocrine therapies. Newer tests (Prosigna, EndoPredict, Breast Cancer Index) appear to possess better prognostic value for late recurrences while also remaining predictive of early relapse. Some clinical prediction problems are more difficult to solve than others: there are no clinically useful prognostic signatures for ER-negative cancers, and drug-specific treatment response predictors also remain elusive. Emerging areas of research involve the development of immune gene signatures that carry modest but significant prognostic value independent of proliferation and ER status and represent candidate predictive markers for immune-targeted therapies. Overall metrics of tumor heterogeneity and genome integrity (for example, homologue recombination deficiency score) are emerging as potential new predictive markers for platinum agents. The recent expansion of high-throughput technology platforms including low-cost sequencing of circulating and tumor-derived DNA and RNA and rapid reliable quantification of microRNA offers new opportunities to build extended prediction models across multiplatform data
Improving the Prognostic Ability through Better Use of Standard Clinical Data - The Nottingham Prognostic Index as an Example
Background Prognostic factors and prognostic models play a key role in medical
research and patient management. The Nottingham Prognostic Index (NPI) is a
well-established prognostic classification scheme for patients with breast
cancer. In a very simple way, it combines the information from tumor size,
lymph node stage and tumor grade. For the resulting index cutpoints are
proposed to classify it into three to six groups with different prognosis. As
not all prognostic information from the three and other standard factors is
used, we will consider improvement of the prognostic ability using suitable
analysis approaches. Methods and Findings Reanalyzing overall survival data of
1560 patients from a clinical database by using multivariable fractional
polynomials and further modern statistical methods we illustrate suitable
multivariable modelling and methods to derive and assess the prognostic
ability of an index. Using a REMARK type profile we summarize relevant steps
of the analysis. Adding the information from hormonal receptor status and
using the full information from the three NPI components, specifically
concerning the number of positive lymph nodes, an extended NPI with improved
prognostic ability is derived. Conclusions The prognostic ability of even one
of the best established prognostic index in medicine can be improved by using
suitable statistical methodology to extract the full information from standard
clinical data. This extended version of the NPI can serve as a benchmark to
assess the added value of new information, ranging from a new single clinical
marker to a derived index from omics data. An established benchmark would also
help to harmonize the statistical analyses of such studies and protect against
the propagation of many false promises concerning the prognostic value of new
measurements. Statistical methods used are generally available and can be used
for similar analyses in other diseases
Tumor banking for health research in Brazil and Latin America: time to leave the cradle
Efficient Double Fragmentation ChIP-seq Provides Nucleotide Resolution Protein-DNA Binding Profiles
Immunoprecipitated crosslinked protein-DNA fragments typically range in size from several hundred to several thousand base pairs, with a significant part of chromatin being much longer than the optimal length for next-generation sequencing (NGS) procedures. Because these larger fragments may be non-random and represent relevant biology that may otherwise be missed, but also because they represent a significant fraction of the immunoprecipitated material, we designed a double-fragmentation ChIP-seq procedure. After conventional crosslinking and immunoprecipitation, chromatin is de-crosslinked and sheared a second time to concentrate fragments in the optimal size range for NGS. Besides the benefits of increased chromatin yields, the procedure also eliminates a laborious size-selection step. We show that the double-fragmentation ChIP-seq approach allows for the generation of biologically relevant genome-wide protein-DNA binding profiles from sub-nanogram amounts of TCF7L2/TCF4, TBP and H3K4me3 immunoprecipitated material. Although optimized for the AB/SOLiD platform, the same approach may be applied to other platforms
Predictors of Chemosensitivity in Triple Negative Breast Cancer: An Integrated Genomic Analysis
Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive disease, and although no effective targeted therapies are available to date, about one-third of patients with TNBC achieve pathologic complete response (pCR) from standard-of-care anthracycline/taxane (ACT) chemotherapy. The heterogeneity of these tumors, however, has hindered the discovery of effective biomarkers to identify such patients. Methods and Findings: We performed whole exome sequencing on 29 TNBC cases from the MD Anderson Cancer Center (MDACC) selected because they had either pCR (n = 18) or extensive residual disease (n = 11) after neoadjuvant chemotherapy, with cases from The Cancer Genome Atlas (TCGA; n = 144) and METABRIC (n = 278) cohorts serving as validation cohorts. Our analysis revealed that mutations in the AR- and FOXA1-regulated networks, in which BRCA1 plays a key role, are associated with significantly higher sensitivity to ACT chemotherapy in the MDACC cohort (pCR rate of 94.1% compared to 16.6% in tumors without mutations in AR/FOXA1 pathway, adjusted p = 0.02) and significantly better survival outcome in the TCGA TNBC cohort (log-rank test, p = 0.05). Combined analysis of DNA sequencing, DNA methylation, and RNA sequencing identified tumors of a distinct BRCA-deficient (BRCA-D) TNBC subtype characterized by low levels of wild-type BRCA1/2 expression. Patients with functionally BRCA-D tumors had significantly better survival with standard-of-care chemotherapy than patients whose tumors were not BRCA-D (log-rank test, p = 0.021), and they had significantly higher mutation burden (p < 0.001) and presented clonal neoantigens that were associated with increased immune cell activity. A transcriptional signature of BRCA-D TNBC tumors was independently validated to be significantly associated with improved survival in the METABRIC dataset (log-rank test, p = 0.009). As a retrospective study, limitations include the small size and potential selection bias in the discovery cohort. Conclusions: The comprehensive molecular analysis presented in this study directly links BRCA deficiency with increased clonal mutation burden and significantly enhanced chemosensitivity in TNBC and suggests that functional RNA-based BRCA deficiency needs to be further examined in TNBC. © 2016 Jiang et al
Integrative analysis of patient-derived tumoroids and ex vivo organoid modelling of ARID1A loss in bladder cancer reveals therapeutic molecular targets
Somatic mutations in ARID1A (AT-rich interactive domain-containing protein 1A) are present in approximately 25% of bladder cancers (BC) and are associated with poor prognosis. With a view to discover effective treatment options for ARID1A-deficient BC patients, we set out to identify targetable effectors dysregulated consequent to ARID1A deficiency. Integrative analyses of ARID1A depletion in normal organoids and data mining in publicly available datasets revealed upregulation of DNA repair and cell cycle-associated genes consequent to loss of ARID1A and identified CHEK1 (Checkpoint kinase 1) and chromosomal passenger complex member BIRC5 (Baculoviral IAP Repeat Containing 5) as therapeutically drug-able candidate molecular effectors. Ex vivo treatment of patient-derived BC tumoroids with clinically advanced small molecule inhibitors targeting CHEK1 or BIRC5 was associated with increased DNA damage signalling and apoptosis, and selectively induced cell death in tumoroids lacking ARID1A protein expression. Thus, integrating public datasets with patient-derived organoid modelling and ex-vivo drug testing can uncover key molecular effectors and mechanisms of oncogenic transformation, potentially leading to novel therapeutic strategies. Our data point to ARID1A protein expression as a suitable candidate biomarker for the selection of BC patients responsive to therapies targeting BIRC5 and CHEK1.</p
- …
