403 research outputs found

    Association between gross motor function (GMFCS) and manual ability (MACS) in children with cerebral palsy. A population-based study of 359 children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gross Motor Function Classification System (GMFCS) has become an important tool to describe motor function in children with Cerebral Palsy (CP). The Manual Ability Classification System (MACS) was developed recently as a corresponding classification of manual ability. The aim of this study was to describe the association between gross motor function and manual ability in a total population of children with cerebral palsy.</p> <p>Methods</p> <p>365 children, born 1992 to 2001, who were registered in a population-based health care programme (CPUP) for children with CP living in the south of Sweden were included in the study. GMFCS was evaluated by the child's physiotherapist and MACS by the occupational therapist. CP diagnosis and subtype were determined by the neuropaediatrician at or after the age of four.</p> <p>Results</p> <p>GMFCS levels were available in all 365 children, MACS levels in 359 (98%). There was a poor overall correlation between gross motor function and manual ability. However, different associations between gross motor function and manual ability were found in the different diagnostic subtypes. Children with spastic hemiplegia generally had a lower level of manual ability than gross motor function (p < 0.001). The reverse association was generally found in children with spastic diplegia (p < 0.001). Children with dyskinetic CP had large limitations in both gross motor function and manual ability, with no significant discrepancy between GMFCS and MACS levels.</p> <p>Conclusion</p> <p>Gross motor function and manual ability are often discrepant in children with CP, and the patterns seem to vary across the different subgroups based on the predominant neurological findings. To give a complete clinical picture when evaluating these children, both aspects have to be described. The GMFCS and the MACS seem to work well in this context and seem very useful in population-based studies, in health care registers for children with CP, and in clinical practice.</p

    Characteristics of children with hip displacement in cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hip dislocation in children with cerebral palsy (CP) is a common and severe problem. The dislocation can be avoided, by screening and preventive treatment of children with hips at risk. The aim of this study was to analyse the characteristics of children with CP who develop hip displacement, in order to optimise a hip surveillance programme.</p> <p>Methods</p> <p>In a total population of children with CP a standardised clinical and radiological follow-up of the hips was carried out as a part of a hip prevention programme. The present study is based on 212 children followed until 9–16 years of age.</p> <p>Results</p> <p>Of the 212 children, 38 (18%) developed displacement with Migration Percentage (MP) >40% and further 19 (9%) MP between 33 and 39%. Mean age at first registration of hip displacement was 4 years, but some hips showed MP > 40% already at two years of age. The passive range of hip motion at the time of first registration of hip displacement did not differ significantly from the findings in hips without displacement.</p> <p>The risk of hip displacement varied according to CP-subtype, from 0% in children with pure ataxia to 79% in children with spastic tetraplegia. The risk of displacement (MP > 40%) was directly related to the level of gross motor function, classified according to the gross motor function classification system, GMFCS, from 0% in children in GMFCS level I to 64% in GMFCS level V.</p> <p>Conclusion</p> <p>Hip displacement in CP often occurs already at 2–3 years of age. Range of motion is a poor indicator of hips at risk. Thus early identification and early radiographic examination of children at risk is of great importance. The risk of hip displacement varies according to both CP-subtype and GMFCS. It is sometimes not possible to determine subtype before 4 years of age, and at present several definitions and classification systems are used. GMFCS is valid and reliable from 2 years of age, and it is internationally accepted.</p> <p>We recommend a hip surveillance programme for children with CP with radiographic examinations based on the child's age and GMFCS level.</p

    Efficacy of a movement control injury-prevention programme in an adult community rugby union population; a cluster randomised controlled trial

    Get PDF
    Background Exercise programmes aimed at reducing injury have been shown to be efficacious for some non-collision sports, but evidence in collision sports such as rugby union is lacking. Objective To evaluate the efficacy of an evidence-informed injury prevention exercise programme in reducing match injuries in adult community rugby union players. Design Prospective cluster randomised (single-blind) controlled trial. Clubs were the unit of randomisation. Setting English adult community clubs (2015–2016 season) with a formally qualified medical professional to diagnose and report match-injuries. Participants 860 clubs were invited to participate of which 81 volunteered and were randomly assigned. Data was received from 41 clubs (control, 19; intervention, 22). Interventions A 42-week exercise programme comprising 6-week graduated exercise blocks was introduced during pre-season. The control programme reflected ‘normal practice’ exercises, whereas the intervention focused on proprioception, balance, cutting, landing, and resistance exercises. Main Outcome Measurements Match-injury incidence and burden for: all ≥8 days time-loss injuries and targeted (lower-limb, shoulder, head and neck, excluding fractures and lacerations) ≥8 days time-loss injuries. Results Poisson regression identified unclear differences between groups for overall injury incidence (rate ratio (RR), 90% confidence interval (CI)=0.9, 0.6–1.3) and injury burden (RR, 90% CI=0.8, 0.5–1.4). A likely beneficial difference in targeted injury incidence (RR, 90% CI=0.6, 0.4–1.0) was identified, with ∼40% lower lower-limb incidence (RR, 90% CI=0.6, 0.4–1.0) and ∼60% lower concussion incidence (RR, 90%CI=0.36, 0.18–0.70) in the intervention group. Completing the intervention at least once per week was associated with a likely beneficial difference between groups (intervention n=15, control n=13; RR, 90% CI=0.7, 0.4–1.0). Conclusions This movement-control injury-prevention programme appeared efficacious, with likely beneficial differences for lower-limb injuries and concussion for the treatment clubs. Targeted injury incidence was ∼30% lower when 1 or more intervention sessions were completed each wee

    Dynein regulates Kv7.4 channel trafficking from the cell membrane.

    Get PDF
    The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2-Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1-mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae

    Use of manual and powered wheelchair in children with cerebral palsy: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mobility is important for the cognitive and psychosocial development of children. Almost one third of children with cerebral palsy (CP) are non-ambulant. Wheelchairs can provide independent mobility, allowing them to explore their environment. Independent mobility is vital for activity and participation and reduces the dependence on caregivers. The purpose of this study was to describe the use of manual and powered wheelchair indoors and outdoors in relation to the degree of independent wheelchair mobility or need for assistance in a total population of children with CP.</p> <p>Methods</p> <p>A cross-sectional study was performed including all children aged 3-18 years with CP living in southern Sweden during 2008. Data was extracted from a register and health care programme for children with CP (CPUP). There were a total of 562 children (326 boys, 236 girls) in the register. Information on the child's use of manual and powered wheelchair indoors and outdoors and the performance in self-propelling or need for assistance were analysed related to age, CP subtype and gross motor function.</p> <p>Results</p> <p>Wheelchairs for mobility indoors were used by 165 (29%) of the 562 children; 61 used wheelchair for independent mobility (32 using manual only, 12 powered only, 17 both) and 104 were pushed by an adult. For outdoor mobility wheelchairs were used by 228 children (41%); 66 used a wheelchair for independent mobility (18 using manual only, 36 powered only, 12 both) and 162 were pushed. The use of wheelchair increased with age and was most frequent in the spastic bilateral and dyskinetic subtypes. Most powered wheelchairs were operated by children at GMFCS level IV.</p> <p>Conclusion</p> <p>In this total population of children with CP, aged 3-18 years, 29% used a wheelchair indoors and 41% outdoors. A majority using manual wheelchairs needed adult assistance (86%) while powered wheelchairs provided independent mobility in most cases (86%). To achieve a high level of independent mobility, both manual and powered wheelchairs should be considered at an early age for children with impaired walking ability.</p

    Motor ability in children treated for idiopathic clubfoot. A controlled pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study motor ability at seven years of age in children treated for idiopathic clubfoot and its relation to clubfoot laterality, foot status and the amount of surgery performed.</p> <p>Methods</p> <p>Twenty children (mean age 7.5 years, SD 3.2 months) from a consecutive birth cohort from our hospital catchments area (300.000 inhabitants from southern Sweden) were assessed with the Movement Assessment Battery for Children (MABC) and the Clubfoot Assessment Protocol (CAP).</p> <p>Results</p> <p>Compared to typically developing children an increased prevalence of motor impairment was found regarding both the total score for MABC (p < 0.05) and the subtest ABC-Ball skills (p < 0.05). No relationship was found between the child's actual foot status, laterality or the extent of foot surgery with the motor ability as measured with MABC. Only the CAP item "one-leg stand" correlated significantly with the MABC (rs = -0.53, p = 0.02).</p> <p>Conclusions</p> <p>Children with idiopathic clubfoot appear to have an increased risk of motor activity limitations and it is possible that other factors, independent of the clinical status, might be involved. The ability to keep balance on one leg may be a sufficient tool for determining which children in the orthopedic setting should be more thoroughly evaluated regarding their neuromotor functioning.</p

    Validity and responsiveness of the Clubfoot Assessment Protocol (CAP). A methodological study

    Get PDF
    BACKGROUND: The Clubfoot Assessment Protocol (CAP) is a multi dimensional instrument designed for longitudinal follow up of the clubfoot deformity during growth. Item reliability has shown to be sufficient. In this article the CAP's validity and responsiveness is studied using the Dimeglio classification scoring as a gold standard. METHODS: Thirty-two children with 45 congenital clubfeet were assessed prospectively and consecutively at ages of new-born, one, two, four months and two years of age. For convergent/divergent construct validity the Spearman's correlation coefficients were calculated. Discriminate validity was evaluated by studying the scores in bilateral clubfeet. The floor-ceiling effects at baseline (untreated clubfeet) and at two years of age (treated clubfeet) were evaluated. Responsiveness was evaluated by using effect sizes (ES) and by calculating if significant changes (Wilcoxons signed test) had occurred between the different measurement occasions. RESULTS: High to moderate significant correlation were found between CAP mobility I and morphology and the Dimeglio scores (r(s )= 0.77 and 0.44 respectively). Low correlation was found between CAP muscle function, mobility II and motion quality and the Dimeglio scoring system (r(s )= 0.20, 0.09 and 0.06 respectively). Of 13 children with bilateral clubfeet, 11 showed different CAP mobility I scores between right and left foot at baseline (untreated) compared with 5 with the Dimeglio score. At the other assessment occasions the CAP mobility I continued to show higher discrimination ability than the Dimeglio. No floor effects and low ceiling effects were found in the untreated clubfeet for both instruments. High ceiling effects were found in the CAP for the treated children and low for the Dimeglio. Responsiveness was good. ES from untreated to treated ranged from 0.80 to 4.35 for the CAP subgroups and was 4.68 for the Dimeglio. The first four treatment months, the CAP mobility I had generally higher ES compared with the Dimeglio. CONCLUSION: The Clubfoot Assessment Protocol shows in this study good validity and responsiveness. The CAP is more responsive when severity ranges between mild – moderate to severe, while the Dimeglio focuses more on the extremes. The ability to discriminate between different mobility status of the right and left foot in bilaterally affected children in this population was higher compared with the Dimeglio score implicating a better sensitivity for the CAP
    corecore