2,630 research outputs found
Welfare Reform and Food Stamp Caseload Dynamics
We use state-level panel data for federal fiscal years 1980–1998 to estimate the impacts of welfare reform and the business cycle on food stamp caseloads. The model we employ is a dynamic function of past caseloads, economic factors, AFDC and Food Stamp Program policies, political factors, AFDC caseload levels, and unobserved fixed and trending heterogeneity. Our results suggest that the robust economy has substantially influenced the recent decline in food stamp caseloads, but that the estimated aggregate effect of welfare reform is modest—we attribute around 45 percent of 1994–1998 decline to the macroeconomy and about 5 percent to welfare reform. We do find substantial heterogeneity in the impact of AFDC waiver policies. States with JOBS sanctions policies but not family cap or earnings disregard waivers can expect a larger long-run decline in caseloads than those states with all three policies. In addition, we do find some evidence, albeit weaker, that states with waivers for unemployed able-bodied adults without dependents can expect higher caseload levels than states without the waivers and that the Electronic Benefits Transfer program is leading to food stamp caseload declines. An important finding of this study is that modeling food stamp caseload dynamics has implications for the estimated effects of policy changes and economic factors—when dynamic models are employed, we observe substantially reduced welfare-reform effects but significantly increased effects of the macroeconomy on food stamp caseloads. These results are robust to models that permit the simultaneous determination of AFDC and food stamp caseloads.
Regional similarities in the distributions of well yield from crystalline rocks in Fennoscandia
Well yields from Precambrian and Palaeozoic bedrock in Norway, Sweden and Finland exhibit very
similar and approximately log-normal distributions: all three data sets exhibit a median yield of
600–700 L hr-1, despite the differences in climate and lithology. This similarity is tentatively reflected
on a larger geographical scale by a meta-analysis of the international data sets on crystalline rock aquifers from other recently glaciated areas (i.e., without a thick regolith of weathered rock). An heuristic treatment of the Fennoscandian data sets suggests that this median yield is consistent with the following bulk properties of shallow (to c. 70–80 m depth) crystalline bedrock: transmissivity of
0.56 ± 0.30 m2 d-1 (6.4 ± 3.4 x 10-6 m2 s-1) and hydraulic conductivity of around 1.1 (± 0.6) x 10-7 m s-1
COMPASS: a 2.6m telescope for CMBR polarization studies
COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented
The significance of nitrogen fixation to new production during early summer in the Baltic Sea.
Rates of dinitrogen (N2) fixation and primary production were measured during two 9 day transect cruises in the Baltic proper in June–July of 1998 and 1999. Assuming that the early phase of the bloom of cyanobacteria lasted a month, total rates of N2 fixation contributed 15 mmol N m−2 (1998) and 33 mmol N m−2 (1999) to new production (sensu Dugdale and Goering, 1967). This constitutes 12–26% more new N than other annual estimates (mid July–mid October) from the same region. The between-station variability observed in both total N2 fixation and primary productivity greatly emphasizes the need for multiple stations and seasonal sampling strategies in biogeochemical studies of the Baltic Sea. The majority of new N from N2 fixation was contributed by filamentous cyanobacteria. On average, cyanobacterial cells >20 µm were able to supply a major part of their N requirements for growth by N2 fixation in both 1998 (73%) and 1999 (81%). The between-station variability was high however, and ranged from 28–150% of N needed to meet the rate of C incorporation by primary production. The molar C:N rate incorporation ratio (C:NRATE) in filamentous cyanobacterial cells was variable (range 7–28) and the average almost twice as high as the Redfield ratio (6.6) in both years. Since the molar C:N mass ratio (C:NMASS) in filamentous cyanobacterial cells was generally lower than C:NRATE at a number of stations, we suggest that the diazotrophs incorporated excess C on a short term basis (carbohydrate ballasting and buoyancy regulation), released nitrogen or utilized other regenerated sources of N nutrients. Measured rates of total N2 fixation contributed only a minor fraction of 13% (range 4–24) in 1998 and 18% (range 2–45) in 1999 to the amount of N needed for the community primary production. An average of 9 and 15% of total N2 fixation was found in cells <5 µm. Since cells <5 µm did not show any detectable rates of N2 fixation, the 15N-enrichment could be attributed to regenerated incorporation of dissolved organic N (DON) and ammonium generated from larger diazotroph cyanobacteria. Therefore, N excretion from filamentous cyanobacteria may significantly contribute to the pool of regenerated nutrients used by the non-diazotroph community in summer. Higher average concentrations of regenerated N (ammonium) coincided with higher rates of N2 fixation found during the 1999 transect and a higher level of 15N-enrichment in cells <5 µm. A variable but significant fraction of total N2 fixation (1–10%) could be attributed to diazotrophy in cells between 5–20 µm
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at Degree Angular Scales Near the Stars Sigma Hercules and Iota Draconis
We present results from two four-frequency observations centered near the
stars Sigma Hercules and Iota Draconis during the fourth flight of the
Millimeter-wave Anisotropy eXperiment (MAX). The observations were made of 6 x
0.6-degree strips of the sky with 1.4-degree peak to peak sinusoidal chop in
all bands. The FWHM beam sizes were 0.55+/-0.05 degrees at 3.5 cm-1 and a
0.75+/-0.05 degrees at 6, 9, and 14 cm-1. Significant correlated structures
were observed at 3.5, 6 and 9 cm-1. The spectra of these signals are
inconsistent with thermal emission from known interstellar dust populations.
The extrapolated amplitudes of synchrotron and free-free emission are too small
to account for the amplitude of the observed structures. If the observed
structures are attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values are
DT/TCMB = (3.1 +1.7-1.3) x 10^-5 for the Sigma Hercules scan, and DT/TCMB =
(3.3 +/- 1.1) x 10^-5 for the Iota Draconis scan (95% confidence upper and
lower limits). Finally a comparison of all six MAX scans is presented.Comment: 13 pages, postscript file, 2 figure
Measurements of Anisotropy in the Cosmic Microwave Background Radiation at 0.5 Degree Angular Scales Near the Star Gamma Ursae Minoris
We present results from a four frequency observation of a 6 x 0.6 degree
strip of the sky centered near the star Gamma Ursae Minoris during the fourth
flight of the Millimeter-wave Anisotropy eXperiment (MAX). The observation was
made with a 1.4 degree peak-to-peak sinusoidal chop in all bands. The FWHM beam
sizes were 0.55 +/- 0.05 degrees at 3.5 cm-1 and 0.75 +/-0.05 degrees at 6, 9,
and 14 cm-1. During this observation significant correlated structure was
observed at 3.5, 6 and 9 cm-1 with amplitudes similar to those observed in the
GUM region during the second and third flights of MAX. The frequency spectrum
is consistent with CMB and inconsistent with thermal emission from interstellar
dust. The extrapolated amplitudes of synchrotron and free-free emission are too
small to account for the amplitude of the observed structure. If all of the
structure is attributed to CMB anisotropy with a Gaussian autocorrelation
function and a coherence angle of 25', then the most probable values of
DeltaT/TCMB in the 3.5, 6, and 9 cm-1 bands are 4.3 (+2.7, -1.6) x 10-5, 2.8
(+4.3, -1.1) x 10-5, and 3.5 (+3.0, -1.6) x 10-5 (95% confidence upper and
lower limits), respectively.Comment: 16 pages, postscrip
SANEPIC: A Map-Making Method for Timestream Data From Large Arrays
We describe a map-making method which we have developed for the Balloon-borne
Large Aperture Submillimeter Telescope (BLAST) experiment, but which should
have general application to data from other submillimeter arrays. Our method
uses a Maximum Likelihood based approach, with several approximations, which
allows images to be constructed using large amounts of data with fairly modest
computer memory and processing requirements. This new approach, Signal And
Noise Estimation Procedure Including Correlations (SANEPIC), builds upon
several previous methods, but focuses specifically on the regime where there is
a large number of detectors sampling the same map of the sky, and explicitly
allowing for the the possibility of strong correlations between the detector
timestreams. We provide real and simulated examples of how well this method
performs compared with more simplistic map-makers based on filtering. We
discuss two separate implementations of SANEPIC: a brute-force approach, in
which the inverse pixel-pixel covariance matrix is computed; and an iterative
approach, which is much more efficient for large maps. SANEPIC has been
successfully used to produce maps using data from the 2005 BLAST flight.Comment: 27 Pages, 15 figures; Submitted to the Astrophysical Journal; related
results available at http://blastexperiment.info/ [the BLAST Webpage
- …
