81 research outputs found

    Development of the Community Water Model (CWatM v1.04) – a high-resolution hydrological model for global and regional assessment of integrated water resources management

    Get PDF
    We develop a new large-scale hydrological and water resources model, the Community Water Model (CWatM), which can simulate hydrology both globally and regionally at different resolutions from 30 arcmin to 30 arcsec at daily time steps. CWatM is open source in the Python programming environment and has a modular structure. It uses global, freely available data in the netCDF4 file format for reading, storage, and production of data in a compact way. CWatM includes general surface and groundwater hydrological processes but also takes into account human activities, such as water use and reservoir regulation, by calculating water demands, water use, and return flows. Reservoirs and lakes are included in the model scheme. CWatM is used in the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), which compares global model outputs. The flexible model structure allows for dynamic interaction with hydro-economic and water quality models for the assessment and evaluation of water management options. Furthermore, the novelty of CWatM is its combination of state-of-the-art hydrological modeling, modular programming, an online user manual and automatic source code documentation, global and regional assessments at different spatial resolutions, and a potential community to add to, change, and expand the open-source project. CWatM also strives to build a community learning environment which is able to freely use an open-source hydrological model and flexible coupling possibilities to other sectoral models, such as energy and agriculture

    GEB v0.1: a large-scale agent-based socio-hydrological model – simulating 10 million individual farming households in a fully distributed hydrological model

    Get PDF
    Humans play a large role in the hydrological system, e.g. by extracting large amounts of water for irrigation, often resulting in water stress and ecosystem degradation. By implementing large-scale adaptation measures, such as the construction of irrigation reservoirs, water stress and ecosystem degradation can be reduced. Yet we know that many decisions, such as the adoption of more effective irrigation techniques or changing crop types, are made at the farm level by a heterogeneous farmer population. While these decisions are usually advantageous for an individual farmer or their community, aggregate effects of those decisions can have large effects downstream. Similarly, decisions made by other stakeholders, such as governments, often have basin-wide effects and affect each farmer differently. To fully comprehend how the human–natural water system evolves over time and space and to explore which interventions are suitable to reduce water stress, it is important to consider human behaviour and feedbacks to the hydrological system simultaneously at the local household and large basin scales. Therefore, we present the Geographical, Environmental, and Behavioural (GEB) model, a coupled agent-based hydrological model that simulates the behaviour and daily bidirectional interaction of more than 10 million individual farm households with the hydrological system on a personal laptop. Farmers exhibit autonomous heterogeneous behaviour based on their characteristics, assets, environment, management policies, and social network. Examples of behaviour are irrigation, generation of income from selling crops, and investment in adaptation measures. Meanwhile, reservoir operators manage the amount of water available for irrigation and river discharge. All actions can be taken at a daily time step and influence the hydrological system directly or indirectly. GEB is dynamically linked with the spatially distributed grid-based hydrological model CWatM at 30â€Čâ€Č resolution (< 1 km at the Equator). Because many smallholder farm fields are much smaller than 1 × 1 km, CWatM was specifically adapted to implement dynamically sized hydrological response units (HRUs) at the farm level, providing each agent with an independently operated hydrological environment. While the model could be applied anywhere globally at both large and small scales, we explore its implementation in the heavily managed Krishna basin in India, which encompasses ∌ 8 % of India's land area and ∌ 12.1 million farmers

    Coupling a large-scale hydrological model (CWatM v1.1) with a high-resolution groundwater flow model (MODFLOW 6) to assess the impact of irrigation at regional scale

    Get PDF
    In the context of changing climate and increasing water demand, large-scale hydrological models are helpful for understanding and projecting future water resources across scales. Groundwater is a critical freshwater resource and strongly controls river flow throughout the year. It is also essential for ecosystems and contributes to evapotranspiration, resulting in climate feedback. However, groundwater systems worldwide are quite diverse, including thick multilayer aquifers and thin heterogeneous aquifers. Recently, efforts have been made to improve the representation of groundwater systems in large-scale hydrological models. The evaluation of the accuracy of these model outputs is challenging because (1) they are applied at much coarser resolutions than hillslope scale, (2) they simplify geological structures generally known at local scale, and (3) they do not adequately include local water management practices (mainly groundwater pumping). Here, we apply a large-scale hydrological model (CWatM), coupled with the groundwater flow model MODFLOW, in two different climatic, geological, and socioeconomic regions: the Seewinkel area (Austria) and the Bhima basin (India). The coupled model enables simulation of the impact of the water table on groundwater–soil and groundwater–river exchanges, groundwater recharge through leaking canals, and groundwater pumping. This regional-scale analysis enables assessment of the model's ability to simulate water tables at fine spatial resolutions (1 km for CWatM, 100–250 m for MODFLOW) and when groundwater pumping is well estimated. Evaluating large-scale models remains challenging, but the results show that the reproduction of (1) average water table fluctuations and (2) water table depths without bias can be a benchmark objective of such models. We found that grid resolution is the main factor that affects water table depth bias because it smooths river incision, while pumping affects time fluctuations. Finally, we use the model to assess the impact of groundwater-based irrigation pumping on evapotranspiration, groundwater recharge, and water table observations from boreholes

    Low flow sensitivity to water withdrawals in Central and Southwestern Europe under 2 K global warming

    Get PDF
    A sufficient freshwater supply is vital for humans, ecosystems, and economies, but anticipated climate and socio-economic change are expected to substantially alter water availability. Across Europe, about two-third of the abstracted freshwater comes from rivers and streams. Various hydrological studies address the resulting need for projections on changes in river discharge. However, those assessments rarely specifically account for the impact of various water withdrawal scenarios during low flow periods. We present here a novel, high-resolution hydrological modeling experiment using pseudo-global warming climate data to investigate the effects of changing water withdrawals under 2 K global warming. Especially in Western and Central Europe the projected impacts on low flows highly depend on the chosen water withdrawal assumption and can severely decrease under the worst case assumptions. Our results highlight the importance of accounting for future water withdrawals in low flow projections, showing that climate-focused impact assessments in near-natural catchments provide only one piece of the anticipated response and do not necessarily reflect changes in heavily managed river basins

    Community Water Model CWatM Manual

    Get PDF
    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of precipitation and temperature and will have regional to localized impacts on water availability. Thus, it is important to assess water demand, water supply and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model will be designed for this purpose in that they include an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWatM will represent one of the new key elements of the WAT program going forward and increasing the innovative niche of work. We will use and develop the model to work at both global and regional (basin) level. The configuration of the model is open source and community-driven to promote our work amongst the wider water community and is flexible enough to introduce further planned developments such as water quality and hydro-economy. Our vision for short to medium term work of the group is to introduce water quality (i.e., salinization in deltas and eutrophication associated with mega cities) into the community model and to consider how to include a qualitative/quantitative measure of transboundary river and groundwater governance into a scenario and modelling framework

    A hillslope-scale aquifer-model to determine past agricultural legacy and future nitrate concentrations in rivers

    Get PDF
    The long-term fate of agricultural nitrate depends on rapid subsurface transfer, denitrification and storage in aquifers. Quantifying these processes remains an issue due to time varying subsurface contribution, unknown aquifer storage and heterogeneous denitrification potential. Here, we develop a parsimonious modelling approach that uses long-term discharge and river nitrate concentration time-series combined with groundwater age data determined from chlorofluorocarbons in springs and boreholes. To leverage their informational content, we use a Boussinesq-type equivalent hillslope model to capture the dynamics of aquifer flows and evolving surface and subsurface contribution to rivers. Nitrate transport was modelled with a depth-resolved high-order finite-difference method and denitrification by a first-order law. We applied the method to three heavily nitrate loaded catchments of a crystalline temperate region of France (Brittany). We found that mean water transit time ranged 10–32 years and Damköhler ratio (transit time/denitrification time) ranged 0.12–0.55, leading to limited denitrification in the aquifer (10–20%). The long-term trajectory of nitrate concentration in rivers appears determined by flows stratification in the aquifer. The results suggest that autotrophic denitrification is controlled by the accessibility of reduced minerals which occurs at the base of the aquifer where flows decrease. One interpretation is that denitrification might be an interfacial process in zones that are weathered enough to transmit flows and not too weathered to have remaining accessible reduced minerals. Consequently, denitrification would not be controlled by the total aquifer volume and related mean transit time but by the proximity of the active weathered interface with the water table. This should be confirmed by complementary studies to which the developed methodology might be further deployed

    WaterStressAT - Climate change induced water stress - participatory modeling to identify risks and opportunities in Austrian regions

    Get PDF
    In Austria, increase in demand as well as climate change might create local and seasonal hot-spots of water stress. It is thus important to understand the status quo and future development of these phenomena to identify potential areas of tension. WaterStressAT assesses water availability and demand in two Austrian case studies under a set of regional development and climate change scenarios

    Deltamethrin Resistance Mechanisms in Aedes aegypti Populations from Three French Overseas Territories Worldwide

    Get PDF
    BACKGROUND:Aedes aegypti is a cosmopolite mosquito, vector of arboviruses. The worldwide studies of its insecticide resistance have demonstrated a strong loss of susceptibility to pyrethroids, the major class of insecticide used for vector control. French overseas territories such as French Guiana (South America), Guadeloupe islands (Lesser Antilles) as well as New Caledonia (Pacific Ocean), have encountered such resistance. METHODOLOGY/PRINCIPAL FINDINGS:We initiated a research program on the pyrethroid resistance in French Guiana, Guadeloupe and New Caledonia. Aedes aegypti populations were tested for their deltamethrin resistance level then screened by an improved microarray developed to specifically study metabolic resistance mechanisms. Cytochrome P450 genes were implicated in conferring resistance. CYP6BB2, CYP6M11, CYP6N12, CYP9J9, CYP9J10 and CCE3 genes were upregulated in the resistant populations and were common to other populations at a regional scale. The implication of these genes in resistance phenomenon is therefore strongly suggested. Other genes from detoxification pathways were also differentially regulated. Screening for target site mutations on the voltage-gated sodium channel gene demonstrated the presence of I1016 and C1534. CONCLUSION /SIGNIFICANCE:This study highlighted the presence of a common set of differentially up-regulated detoxifying genes, mainly cytochrome P450 genes in all three populations. GUA and GUY populations shared a higher number of those genes compared to CAL. Two kdr mutations well known to be associated to pyrethroid resistance were also detected in those two populations but not in CAL. Different selective pressures and genetic backgrounds can explain such differences. These results are also compared with those obtained from other parts of the world and are discussed in the context of integrative research on vector competence
    • 

    corecore