414 research outputs found

    Modelling the effect of gap junctions on tissue-level cardiac electrophysiology

    Full text link
    When modelling tissue-level cardiac electrophysiology, continuum approximations to the discrete cell-level equations are used to maintain computational tractability. One of the most commonly used models is represented by the bidomain equations, the derivation of which relies on a homogenisation technique to construct a suitable approximation to the discrete model. This derivation does not explicitly account for the presence of gap junctions connecting one cell to another. It has been seen experimentally [Rohr, Cardiovasc. Res. 2004] that these gap junctions have a marked effect on the propagation of the action potential, specifically as the upstroke of the wave passes through the gap junction. In this paper we explicitly include gap junctions in a both a 2D discrete model of cardiac electrophysiology, and the corresponding continuum model, on a simplified cell geometry. Using these models we compare the results of simulations using both continuum and discrete systems. We see that the form of the action potential as it passes through gap junctions cannot be replicated using a continuum model, and that the underlying propagation speed of the action potential ceases to match up between models when gap junctions are introduced. In addition, the results of the discrete simulations match the characteristics of those shown in Rohr 2004. From this, we suggest that a hybrid model -- a discrete system following the upstroke of the action potential, and a continuum system elsewhere -- may give a more accurate description of cardiac electrophysiology.Comment: In Proceedings HSB 2012, arXiv:1208.315

    Poly(thiophenes) derivatized with linear and macrocyclic polyethers: from cation detection to molecular actuation

    Get PDF
    The association of linear or macrocyclic polyethers with the electronic properties of the π-conjugated polythiophene backbone leads to functional conducting polymers that exhibit metal cation dependent electronic properties. Based on this concept, various classes of cation sensors have been proposed and investigated for almost two decades. The interactions of metal cations with linear or macrocyclic polyether functional groups lead to modifications of the electronic properties of the π-conjugated backbone through various mechanisms including direct electronic effects on a single conjugated chain, collective electrochemical processes, or conformational changes. Conjugated polymers and oligomers representative of these various processes are discussed with an emphasis on recent examples of derivatized conjugated systems in which the interactions between metal cations and polyether groups serve as driving force to create molecular motion in conjugated systems

    Hippocampus-Avoidance Whole-Brain Radiation Therapy Is Efficient in the Long-Term Preservation of Hippocampal Volume

    Get PDF
    Background and Purpose: With improved life expectancy, preventing neurocognitive decline after cerebral radiotherapy is gaining more importance. Hippocampal damage has been considered the main culprit for cognitive deficits following conventional whole-brain radiation therapy (WBRT). Here, we aimed to determine to which extent hippocampus-avoidance WBRT (HA-WBRT) can prevent hippocampal atrophy compared to conventional WBRT. Methods and Materials: Thirty-five HA-WBRT and 48 WBRT patients were retrospectively selected, comprising a total of 544 contrast-enhanced T1-weighted magnetic resonance imaging studies, longitudinally acquired within 24 months before and 48 months after radiotherapy. HA-WBRT patients were treated analogously to the ongoing HIPPORAD-trial (DRKS00004598) protocol with 30 Gy in 12 fractions and dose to 98% of the hippocampus ≤ 9 Gy and to 2% ≤ 17 Gy. WBRT was mainly performed with 35 Gy in 14 fractions or 30 Gy in 10 fractions. Anatomical images were segmented and the hippocampal volume was quantified using the Computational Anatomy Toolbox (CAT), including neuroradiological expert review of the segmentations. Results: After statistically controlling for confounding variables such as age, gender, and total intracranial volume, hippocampal atrophy was found after both WBRT and HA-WBRT (p Conclusion: HA-WBRT is a therapeutic option for patients with multiple brain metastases, which can effectively and durably minimize hippocampal atrophy compared to conventional WBRT

    Electropolymerizable 3Dπ-conjugated architectures with ethylenedioxythiophene (EDOT) end-groups as precursors of electroactive conjugated networks

    Get PDF
    Three-dimensional conjugated architectures involving conjugated branches with terminal EDOT groups attached onto a bithiophene core twisted by ca. 90 degrees by steric interactions have been synthesized by Stille coupling reactions. The UV-Vis absorption spectra recorded in solution show complex spectral features that depend on both the size and chemical structure of the main conjugated segment and of the conjugated side chains. Thanks to the fixation of the terminal EDOT groups, these compounds undergo straightforward and complete electropolymerization to produce stable electrode materials. The analysis of the electrochemical and optical properties of the polymers by cyclic voltammetry and spectroelectrochemistry suggests that the electrochemical coupling of the terminal EDOT groups leads to the formation of pi-conjugated networks the electrochemical and optical properties of which can be tuned through the length and chemical composition of the oligomeric conjugated links

    Towards thieno[3,2-b]thiophene based cyclophanes

    Get PDF
    International audienc

    Electron-fluctuation interaction in a non-Fermi superconductor

    Full text link
    We studied the influence of the amplitude fluctuations of a non-Fermi superconductor on the energy spectrum of the 2D Anderson non-Fermi system. The classical fluctuations give a temperature dependence in the pseudogap induced in the fermionic excitations.Comment: revtex fil

    Synthesis and electronic properties of terthienyls β-substituted by (thienyl)cyanovinylene groups

    Get PDF
    Terthienyls functionalized at their two outer β,β′-positions by 2- and 3-(thienyl)cyanovinyl groups have been synthesized by basic condensation. The analysis of their electronic properties by UV–vis spectroscopy and cyclic voltammetry shows that the mode of derivatization affects essentially the LUMO level of the conjugated system

    Multi-membership gene regulation in pathway based microarray analysis

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results: We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions: We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.The work was sponsored by the studentship scheme of the School of Information Systems, Computing and Mathematics, Brunel Universit

    c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans

    Get PDF
    The OpenWorm project has the ambitious goal of producing a highly detailed in silico model of the nematode Caenorhabditis elegans A crucial part of this work will be a model of the nervous system encompassing all known cell types and connections. The appropriate level of biophysical detail required in the neuronal model to reproduce observed high-level behaviours in the worm has yet to be determined. For this reason, we have developed a framework, c302, that allows different instances of neuronal networks to be generated incorporating varying levels of anatomical and physiological detail, which can be investigated and refined independently or linked to other tools developed in the OpenWorm modelling toolchain.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'
    corecore