81 research outputs found

    A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury

    Get PDF
    Transforming growth factor beta1 (TGF-beta1) is a pleiotropic cytokine, which displays potent profibrogenic effects and is highly expressed in fibrotic livers. For this reason, development of TGF-B1 inhibitors might be of great importance to control liver fibrogenesis as well as other undesired side effects due to this cytokine. Potential peptide inhibitors of TGF-beta1 (derived from TGF-beta1 and from its type III receptor) were tested in vitro and in vivo using different assays. Peptides P11 and P12, derived from TGF-beta1, and P54 and P144, derived from its type III receptor, prevented TGF-beta1-dependent inhibition of MV1Lu proliferation in vitro and markedly reduced binding of TGF-beta1 to its receptors. P144 blocked TGF-beta1-dependent stimulation of a reporter gene under the control of human alpha2(I) collagen promoter. Intraperitoneal administration of P144 also showed potent antifibrogenic activity in vivo in the liver of rats receiving CCl4. These rats also showed a significant decrease in the number of activated hepatic stellate cells as compared with those treated with saline only. These results suggest that short synthetic peptides derived from TGF-beta1 type III receptor may be of value in reducing liver fibrosis in chronic liver injury

    Prdm5 Regulates Collagen Gene Transcription by Association with RNA Polymerase II in Developing Bone

    Get PDF
    PRDM family members are transcriptional regulators involved in tissue specific differentiation. PRDM5 has been reported to predominantly repress transcription, but a characterization of its molecular functions in a relevant biological context is lacking. We demonstrate here that Prdm5 is highly expressed in developing bones; and, by genome-wide mapping of Prdm5 occupancy in pre-osteoblastic cells, we uncover a novel and unique role for Prdm5 in targeting all mouse collagen genes as well as several SLRP proteoglycan genes. In particular, we show that Prdm5 controls both Collagen I transcription and fibrillogenesis by binding inside the Col1a1 gene body and maintaining RNA polymerase II occupancy. In vivo, Prdm5 loss results in delayed ossification involving a pronounced impairment in the assembly of fibrillar collagens. Collectively, our results define a novel role for Prdm5 in sustaining the transcriptional program necessary to the proper assembly of osteoblastic extracellular matrix

    Role of host genetics in fibrosis

    Get PDF
    Fibrosis can occur in tissues in response to a variety of stimuli. Following tissue injury, cells undergo transformation or activation from a quiescent to an activated state resulting in tissue remodelling. The fibrogenic process creates a tissue environment that allows inflammatory and matrix-producing cells to invade and proliferate. While this process is important for normal wound healing, chronicity can lead to impaired tissue structure and function

    Characterization of Fat-Storing Cell Lines Derived From Normal and CCl\u3csub\u3e4\u3c/sub\u3e-Cirrhotic Livers. Differences in the Production of Interleukin-6

    No full text
    Liver fat-storing cells (FSC) play an important role in collagen deposition. During the induction of liver cirrhosis, FSC lose their fat droplets, acquire an actin-rich cytoskeleton and transform into myofibroblasts. Myofibroblasts have been associated with increased collagen production in cirrhotic livers. Cultured FSC resemble myofibroblasts. However, it is not known whether regulation of collagen gene expression is similar in FSC obtained from normal or cirrhotic livers. In this communication, we describe the characterization of two fat-storing cell lines, one from normal (NFSC) and one from CCl4-cirrhotic liver (CFSC), obtained after spontaneous immortalization in culture. We studied the effect of serum and various growth factors on cell proliferation. We determined the production of collagen and fibronectin and we analyzed the presence of mRNA transcripts of collagens type I, III, and IV, fibronectin laminin, transforming growth factor-β and interleukin-6. We found that CFSC have a greater serum-dependency than NFSC. NFSC grow with a mixture of insulin and epidermal growth factor, whereas CFSC proliferate only with platelet-derived growth factor. Although we did not find significant differences in the expression of mRNAs for collagen type I, fibronectin and transforming growth factor-β, collagen and fibronectin synthesis was increased 2- and 1.5-fold respectively. NFSC contained 1.6- and 2.0-fold more type III collagen and laminin mRNAs, respectively, than CFSC. Neither cell line expressed type IV collagen mRNA. NFSC but not CFSC produced interleukin-6. These results suggest that, except for the lack of transcripts of collagen type IV, both cell lines resemble primary cultures of FSC. However, significant differences in cell proliferation and interleukin-6 production between the two cell lines were found. We suggest that these cell lines could be useful tools to study possible differences in regulation of matrix production by FSC
    corecore