38 research outputs found
Analytic curves in algebraic varieties over number fields
We establish algebraicity criteria for formal germs of curves in algebraic
varieties over number fields and apply them to derive a rationality criterion
for formal germs of functions, which extends the classical rationality theorems
of Borel-Dwork and P\'olya-Bertrandias valid over the projective line to
arbitrary algebraic curves over a number field.
The formulation and the proof of these criteria involve some basic notions in
Arakelov geometry, combined with complex and rigid analytic geometry (notably,
potential theory over complex and -adic curves). We also discuss geometric
analogues, pertaining to the algebraic geometry of projective surfaces, of
these arithmetic criteria.Comment: 55 pages. To appear in "Algebra, Arithmetic, and Geometry: In Honor
of Y.i. Manin", Y. Tschinkel & Yu. Manin editors, Birkh\"auser, 200
Automated swirl detection algorithm (ASDA) and its application to simulation and observational data
Swirling motions in the solar atmosphere have been widely observed in recent years and suggested to play a key role in channeling energy from the photosphere into the corona. Here, we present a newly developed Automated Swirl Detection Algorithm (ASDA) and discuss its applications. ASDA is found to be very proficient at detecting swirls in a variety of synthetic data with various levels of noise, implying our subsequent scientific results are astute. Applying ASDA to photospheric observations with a pixel size of 39.2 km sampled by the Solar Optical Telescope on board Hinode suggests a total number of 1.62 × 105 swirls in the photosphere, with an average radius and rotating speed of ~290 km and <1.0 km s−1, respectively. Comparisons between swirls detected in Bifrost numerical MHD simulations and both ground-based and space-borne observations suggest that (1) the spatial resolution of data plays a vital role in the total number and radii of swirls detected, and (2) noise introduced by seeing effects could decrease the detection rate of swirls, but has no significant influences in determining their inferred properties. All results have shown that there is no significant difference in the analyzed properties between counterclockwise or clockwise rotating swirls. About 70% of swirls are located in intergranular lanes. Most of the swirls have lifetimes of less than twice the cadences, meaning future research should aim to use data with much higher cadences than 6 s. In the conclusions, we propose some promising future research applications where ASDA may provide useful insight
A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the intake stroke of a gasoline engine
Due to its positive effect on flame propagation in the case of a well-defined breakdown, the formation of a large-scale tumble motion is an important goal in engine development. Cycle-to-cycle variations (CCV) in the tumble position and strength however lead to a fluctuating tumble breakdown in space and time and therefore to combustion variations, indicated by CCV of the peak pressure. This work aims at a detailed investigation of the large-scale tumble motion and its interaction with the piston boundary layer during the intake stroke in a state-of-the-art gasoline engine. To allow the validation of the flow near the piston surface obtained by simulation, a new measurement technique called “Flying PIV” is applied. A detailed comparison between experimental and simulation results is carried out as well as an analysis of the obtained flow field. The large-scale tumble motion is investigated based on numerical data of multiple highly resolved intake strokes obtained using scale-resolving simulations. A method to detect the tumble center position within a 3D flow field, as an extension of previously developed 2D and 3D algorithms, is presented and applied. It is then used to investigate the phase-averaged tumble structure, its characteristics in terms of angular velocity and the CCV between the individual intake strokes. Finally, an analysis is presented of the piston boundary layer and how it is influenced by the tumble motion during the final phase of the intake stroke
Development and application of bivariate 2D-EMD for the analysis of instantaneous flow structures and cycle-to-cycle variations of in-cylinder flow
International audienceThe bivariate two dimensional empirical mode decomposition (Bivariate 2D-EMD) is extended to estimate the turbulent fluctuations and to identify cycle-to-cycle variations (CCV) of in-cylinder flow. The Bivariate 2D-EMD is an adaptive approach that is not restricted by statistical convergence criterion, hence it can be used for analyzing the nonlinear and non-stationary phenomena. The methodology is applied to a high-speed PIV dataset that measures the velocity field within the tumble symmetry plane of an optically accessible engine. The instantaneous velocity field is decomposed into a finite number of 2D spatial modes. Based on energy considerations, the in-cylinder flow large-scale organized motion is separated from turbulent fluctuations. This study is focused on the second half of the compression stroke. For most of the cycles, the maximum of turbulent fluctuations is located between 50 and 30 crank angle degrees before top dead center (TDC). In regards to the phase-averaged velocity field, the contribution of CCV to the fluctuating kinetic energy is approximately 55% near TDC
Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach
The final publication is available at Springer via http://dx.doi.org/10.1007/s00348-015-2107-3The potential benefits of active flow control are no more debated. Among many others applications, flow control provides an effective mean for manipulating turbulent separated flows. Here, a nonthermal surface plasma discharge (dielectric barrier discharge) is installed at the step corner of a backward-facing step (U0 = 15 m/s, Reh = 30,000, Re¿ = 1650). Wall pressure sensors are used to estimate the reattaching location downstream of the step (objective function #1) and also to measure the wall pressure fluctuation coefficients (objective function #2). An autonomous multi-variable optimization by genetic algorithm is implemented in an experiment for optimizing simultaneously the voltage amplitude, the burst frequency and the duty cycle of the high-voltage signal producing the surface plasma discharge. The single-objective optimization problems concern alternatively the minimization of the objective function #1 and the maximization of the objective function #2. The present paper demonstrates that when coupled with the plasma actuator and the wall pressure sensors, the genetic algorithm can find the optimum forcing conditions in only a few generations. At the end of the iterative search process, the minimum reattaching position is achieved by forcing the flow at the shear layer mode where a large spreading rate is obtained by increasing the periodicity of the vortex street and by enhancing the vortex pairing process. The objective function #2 is maximized for an actuation at half the shear layer mode. In this specific forcing mode, time-resolved PIV shows that the vortex pairing is reduced and that the strong fluctuations of the wall pressure coefficients result from the periodic passages of flow structures whose size corresponds to the height of the step model.Peer ReviewedPostprint (author's final draft
Interest and feasibility of a modified supine position for posterior cranial fossa surgical procedures.
The sitting position is considered as a gold standard for posterior fossa surgical procedures. However, in order to decrease the incidence rate of cerebral venous air embolisms, we presently described a modified supine position allowing performance of posterior fossa surgical procedures. Such position is easy and quickly performed with light variations of blood pressure: patients are placed supine with paddings inserted under ipsilateral shoulder and buttock, and head turned to other side of surgical site. Dural tension estimated by the surgeon was always considered as good. We performed more than 100 surgical procedures in this position without any complication for 10 years
GLOBAL ENVIRONMENT FACILITY SUPPORT FOR SUSTAINABLE TRANSPORT: EARLY LESSONS FROM WORLD BANK-ASSISTED PROJECTS IN MEXICO CITY, MEXICO; SANTIAGO, CHILE; AND LIMA, PERU
Global Environment Facility (GEF) support for World Bank sustainable transport activities is described. An overview is presented of current GEF strategy for sustainable transport, which reflects a shift beyond individual technology interventions toward broader objectives, including modal shift, demand management, and land use planning. Ongoing GEF projects that exemplify this shift are reviewed by examining projects in Latin America and Asia whose aim is improving public transport, nonmotorized programs, and institutional capacity related to sustainable transport. The major lessons that can be drawn from these projects, most of which are still at an early stage, is that local authorities are often enthusiastic about getting involved in programs that simultaneously address key transportation concerns in their cities (such as access, safety, congestion, local air quality) and result in less overall energy use and greenhouse gas emissions. Much can be achieved as long as project communications and promotion are addressed and carefully targeted at decision makers and potential beneficiaries