7,327 research outputs found
Quantum Monte Carlo simulations of a particle in a random potential
In this paper we carry out Quantum Monte Carlo simulations of a quantum
particle in a one-dimensional random potential (plus a fixed harmonic
potential) at a finite temperature. This is the simplest model of an interface
in a disordered medium and may also pertain to an electron in a dirty metal. We
compare with previous analytical results, and also derive an expression for the
sample to sample fluctuations of the mean square displacement from the origin
which is a measure of the glassiness of the system. This quantity as well as
the mean square displacement of the particle are measured in the simulation.
The similarity to the quantum spin glass in a transverse field is noted. The
effect of quantum fluctuations on the glassy behavior is discussed.Comment: 23 pages, 7 figures included as eps files, uses RevTeX. Accepted for
publication in J. of Physics A: Mathematical and Genera
Replica field theory for a polymer in random media
In this paper we revisit the problem of a (non self-avoiding) polymer chain
in a random medium which was previously investigated by Edwards and Muthukumar
(EM). As noticed by Cates and Ball (CB) there is a discrepancy between the
predictions of the replica calculation of EM and the expectation that in an
infinite medium the quenched and annealed results should coincide (for a chain
that is free to move) and a long polymer should always collapse. CB argued that
only in a finite volume one might see a ``localization transition'' (or
crossover) from a stretched to a collapsed chain in three spatial dimensions.
Here we carry out the replica calculation in the presence of an additional
confining harmonic potential that mimics the effect of a finite volume. Using a
variational scheme with five variational parameters we derive analytically for
d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the
radius of gyration, g is the strength of the disorder, \mu is the spring
constant associated with the confining potential and V is the associated
effective volume of the system. Thus the EM result is recovered with their
constant replaced by ln(V) as argued by CB. We see that in the strict infinite
volume limit the polymer always collapses, but for finite volume a transition
from a stretched to a collapsed form might be observed as a function of the
strength of the disorder. For d<2 and for large
V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and
R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also
collapses in the large L limit. The 1-step replica symmetry breaking solution
is crucial for obtaining the above results.Comment: Revtex, 32 page
NICMOS Observations of Low-Redshift Quasar Host Galaxies
We have obtained Near-Infrared Camera and Multi-Object Spectrometer images of
16 radio quiet quasars observed as part of a project to investigate the
``luminosity/host-mass limit.'' The limit results were presented in McLeod,
Rieke, & Storrie-Lombardi (1999). In this paper, we present the images
themselves, along with 1- and 2-dimensional analyses of the host galaxy
properties. We find that our model-independent 1D technique is reliable for use
on ground-based data at low redshifts; that many radio-quiet quasars live in
deVaucouleurs-law hosts, although some of the techniques used to determine host
type are questionable; that complex structure is found in many of the hosts,
but that there are some hosts that are very smooth and symmetric; and that the
nuclei radiate at ~2-20% of the Eddington rate based on the assumption that all
galaxies have central black holes with a constant mass fraction of 0.6%.
Despite targeting hard-to-resolve hosts, we have failed to find any that imply
super-Eddington accretion rates.Comment: To appear in ApJ, 28 pages including degraded figures. Download the
paper with full-resolutio figures from
http://www.astro.wellesley.edu/kmcleod/mm.p
Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential
In this paper we expand our previous investigation of a quantum particle
subject to the action of a random potential plus a fixed harmonic potential at
a finite temperature T. In the classical limit the system reduces to a
well-known ``toy'' model for an interface in a random medium. It also applies
to a single quantum particle like an an electron subject to random
interactions, where the harmonic potential can be tuned to mimic the effect of
a finite box. Using the variational approximation, or alternatively, the limit
of large spatial dimensions, together with the use the replica method, and are
able to solve the model and obtain its phase diagram in the
plane, where is the particle's mass. The phase diagram is similar to that
of a quantum spin-glass in a transverse field, where the variable
plays the role of the transverse field. The glassy phase is characterized by
replica-symmetry-breaking. The quantum transition at zero temperature is also
discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate
file figures.u
Analysis of Gamma Rays and Cosmic Muons with a Single Detector
In this paper, we report on the construction and upgrade of a 2002 Lawrence Berkeley National Laboratory (LBNL) Quanknet Cosmic Muons Detector. By adapting this model, we modify the electronics and mechanics to achieve a highly efficient gamma-ray and cosmic-ray detector. Each detector module uses a one-inch-thick scintillator, attached to a photomultiplier tube (PMT) and mounted on a solid aluminum frame. A mechanical support was designed to allow flexible positioning between the two modules. The detector uses scintillation to transform passing radiation into detectable photons that are guided toward a photocathode surface of the PMT, triggering the release of photoelectrons that are then amplified to yield measurable electronic signals. The modules were connected to an electronics section that compared the signals from the two PMTs and logically determined if they were coincidence events. A data-collection device was added for faster count rates and to enable counts for extended times ranging from a few hours to days as needed. Count rates were taken at a variety of distances from the radioactive source, 60Co (cobalt), which produced two gamma rays and a beta particle. To investigate the isotropic behavior of radiation, two detection modules were adjusted to different angles of rotation with respect to each other, and the coincidence counts were measured. The coincidence counts from the modules set at various angles were consistent throughout the angular spectrum, and only lead shielding visibly reduced the number of counts from the radioactive source. The inverse-square-law behavior of radiation has also been considered. The results were such that the number of counts decreased as a function of increasing distance from the source. Furthermore, positioning the detector to point toward the sky in different orientations, we measured cosmic ray muon flux as the angle from the vertical was decreased. In doing so, we scanned different patches of the atmosphere. For the optimum operation during the detection phase, we plateaued both PMTs to single out their best operating gain voltage while eliminating false background noise signals. The detector is more efficient and adaptable in collecting both gamma rays and cosmic-ray muon-flux information
Counting Giant Gravitons in AdS_3
We quantize the set of all quarter BPS brane probe solutions in global AdS_3
\times S^3 \times T^4/K3 found in arxiv:0709.1168 [hep-th]. We show that,
generically, these solutions give rise to states in discrete representations of
the SL(2,R) WZW model on AdS_3. Our procedure provides us with a detailed
description of the low energy 1/4 and 1/2 BPS sectors of string theory on this
background. The 1/4 BPS partition function jumps as we move off the point in
moduli space where the bulk theta angle and NS-NS fields vanish. We show that
generic 1/2 BPS states are protected because they correspond to geodesics
rather than puffed up branes. By exactly quantizing the simplest of the probes
above, we verify our description of 1/4 BPS states and find agreement with the
known spectrum of 1/2 BPS states of the boundary theory. We also consider the
contribution of these probes to the elliptic genus and discuss puzzles, and
their possible resolutions, in reproducing the elliptic genus of the symmetric
product.Comment: 47 pages; (v2) references and minor clarifications adde
The Stellar Populations and Evolution of Lyman Break Galaxies
Using deep near-IR and optical observations of the HDF-N from the HST NICMOS
and WFPC2 and from the ground, we examine the spectral energy distributions
(SEDs) of Lyman break galaxies (LBGs) at 2.0 < z < 3.5. The UV-to-optical
rest-frame SEDs of the galaxies are much bluer than those of present-day spiral
and elliptical galaxies, and are generally similar to those of local starburst
galaxies with modest amounts of reddening. We use stellar population synthesis
models to study the properties of the stars that dominate the light from LBGs.
Under the assumption that the star-formation rate is continuous or decreasing
with time, the best-fitting models provide a lower bound on the LBG mass
estimates. LBGs with ``L*'' UV luminosities are estimated to have minimum
stellar masses ~ 10^10 solar masses, or roughly 1/10th that of a present-day L*
galaxy. By considering the effects of a second component of maximally-old
stars, we set an upper bound on the stellar masses that is ~ 3-8 times the
minimum estimate. We find only loose constraints on the individual galaxy ages,
extinction, metallicities, initial mass functions, and prior star-formation
histories. We find no galaxies whose SEDs are consistent with young (< 10^8
yr), dust-free objects, which suggests that LBGs are not dominated by ``first
generation'' stars, and that such objects are rare at these redshifts. We also
find that the typical ages for the observed star-formation events are
significantly younger than the time interval covered by this redshift range (~
1.5 Gyr). From this, and from the relative absence of candidates for quiescent,
non-star-forming galaxies at these redshifts in the NICMOS data, we suggest
that star formation in LBGs may be recurrent, with short duty cycles and a
timescale between star-formation events of < 1 Gyr. [Abridged]Comment: LaTeX, 37 pages, 21 figures. Accepted for publication in the
Astrophysical Journa
Disorder effects in the quantum Heisenberg model: An Extended Dynamical mean-field theory analysis
We investigate a quantum Heisenberg model with both antiferromagnetic and
disordered nearest-neighbor couplings. We use an extended dynamical mean-field
approach, which reduces the lattice problem to a self-consistent local impurity
problem that we solve by using a quantum Monte Carlo algorithm. We consider
both two- and three-dimensional antiferromagnetic spin fluctuations and
systematically analyze the effect of disorder. We find that in three dimensions
for any small amount of disorder a spin-glass phase is realized. In two
dimensions, while clean systems display the properties of a highly correlated
spin-liquid (where the local spin susceptibility has a non-integer power-low
frequency and/or temperature dependence), in the present case this behavior is
more elusive unless disorder is very small. This is because the spin-glass
transition temperature leaves only an intermediate temperature regime where the
system can display the spin-liquid behavior, which turns out to be more
apparent in the static than in the dynamical susceptibility.Comment: 15 pages, 7 figure
The Baldwin Effect and Black Hole Accretion: A Spectral Principal Component Analysis of a Complete QSO Sample
A unique set of UV-optical spectrograms of 22 low redshift QSOs are
investigated using principal component analysis. We find three significant
principal components over the broad wavelength range from Ly\alpha to H\alpha.
They together account for about 78% of the sample intrinsic variance. We
present strong arguments that the first principal component represents the
Baldwin effect, relating equivalent widths to the luminosity (i.e. accretion
rate), but only emission-line cores are involved. The second component
represents continuum variations, probably dominated by intrinsic reddening. The
third principal component directly relates QSO UV properties to the optical
principal component 1 found by Boroson & Green (1992). It is the primary cause
of scatter in the Baldwin relationships. It is also directly related to broad
emission-line width and soft X-ray spectral index, and therefore probably
driven by Eddington accretion ratio. We demonstrate how Baldwin relationships
can be derived using our first principal component, virtually eliminating the
scatter caused by the third principal component. This rekindles the hope that
the Baldwin relationships can be used for cosmological study.Comment: 35 pages, 13 figures, AASTEX, accepted for publication in Ap
Magnetism and local distortions near carbon impurity in -iron
Local perturbations of crystal and magnetic structure of -iron near
carbon interstitial impurity is investigated by {\it ab initio} electronic
structure calculations. It is shown that the carbon impurity creates locally a
region of ferromagnetic ordering with substantial tetragonal distortions.
Exchange integrals and solution enthalpy are calculated, the latter being in a
very good agreement with experimental data. Effect of the local distortions on
the carbon-carbon interactions in -iron is discussed.Comment: 4 pages 3 figures. Final version, accepted to Phys.Rev. Let
- …
