88 research outputs found

    The Chromo-Dielectric Soliton Model: Quark Self Energy and Hadron Bags

    Get PDF
    The chromo-dielectric soliton model (CDM) is Lorentz- and chirally-invariant. It has been demonstrated to exhibit dynamical chiral symmetry breaking and spatial confinement in the locally uniform approximation. We here study the full nonlocal quark self energy in a color-dielectric medium modeled by a two parameter Fermi function. Here color confinement is manifest. The self energy thus obtained is used to calculate quark wave functions in the medium which, in turn, are used to calculate the nucleon and pion masses in the one gluon exchange approximation. The nucleon mass is fixed to its empirical value using scaling arguments; the pion mass (for massless current quarks) turns out to be small but non-zero, depending on the model parameters.Comment: 24 pages, figures available from the author

    Hadronization of a Quark-Gluon Plasma in the Chromodielectric Model

    Get PDF
    We have carried out simulations of the hadronization of a hot, ideal but effectively massive quark-gluon gas into color neutral clusters in the framework of the semi-classical SU(3) chromodielectric model. We have studied the possible quark-gluon compositions of clusters as well as the final mass distribution and spectra, aiming to obtain an insight into relations between hadronic spectral properties and the confinement mechanism in this model.Comment: 34 pages, 37 figure

    ROBO: a Model and a Code for the Study of the Interstellar Medium

    Full text link
    We present ROBO, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large scale structures in cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium based molecules, helium, and metals). New reaction rates for the charge transfer in H+\mathrm H^+ and H2\mathrm H_2 collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates of which the model follows the formation and destruction by several processes. The model takes into account an accurate treatment of the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO, with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies.Comment: accepted for publication in section 15. Numerical methods and codes of Astronomy and Astrophysic

    Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial

    Get PDF
    Hexagonal boron nitride (h-BN) is a natural hyperbolic material1, in which the dielectric constants are the same in the basal plane (Δ[superscript t] ≥ Δ[superscript x] = Δ[superscript y]) but have opposite signs (Δ[superscript t] Δ[superscript z ]< 0) in the normal plane (Δ[superscript z]). Owing to this property, finite-thickness slabs of h-BN act as multimode waveguides for the propagation of hyperbolic phonon polaritons—collective modes that originate from the coupling between photons and electric dipoles in phonons. However, control of these hyperbolic phonon polaritons modes has remained challenging, mostly because their electrodynamic properties are dictated by the crystal lattice of h-BN. Here we show, by direct nano-infrared imaging, that these hyperbolic polaritons can be effectively modulated in a van der Waals heterostructure composed of monolayer graphene on h-BN. Tunability originates from the hybridization of surface plasmon polaritons in graphene with hyperbolic phonon polaritons in h-BN so that the eigenmodes of the graphene/h-BN heterostructure are hyperbolic plasmon–phonon polaritons. The hyperbolic plasmon–phonon polaritons in graphene/h-BN suffer little from ohmic losses, making their propagation length 1.5–2.0 times greater than that of hyperbolic phonon polaritons in h-BN. The hyperbolic plasmon–phonon polaritons possess the combined virtues of surface plasmon polaritons in graphene and hyperbolic phonon polaritons in h-BN. Therefore, graphene/h-BN can be classified as an electromagnetic metamaterial as the resulting properties of these devices are not present in its constituent elements alone

    REAL-TIME DESCRIPTION OF PARTON-HADRON CONVERSION AND CONFINEMENT DYNAMICS

    Get PDF
    We propose a new and universal approach to the hadronization problem that incorporates both partonic and hadronic degrees of freedom in their respective domains of relevance, and that describes the conversion between them within a kinetic field theory formulation in real time and full 7-dimensional phase space. We construct a scale-dependent effective theory that reduces to perturbative QCD with its scale and chiral symmetry properties at short space-time distances, but at large distances (r > 1 fm) yields symmetry breaking gluon and quark condensates plus hadronic excitations. The approach is applied to the evolution of fragmenting qq~ and gg jet pairs as the system evolves from the initial 2-jet configuration, via parton showering and cluster formation, to the final yield of hadrons. The phenomenological implications for e+e- -> hadrons are investigated, such as the time scale of the transition, and its energy dependence, cluster size and mass distributions. We compare our results for particle production and Bose-Einstein correlations with experimental data, and find an interesting possibility of extracting the basic parameters of the space-time evolution of the system from Bose enhancement measurements.Comment: 51 pages, latex, 14 figures as uu-encoded postscript file

    Why do microorganisms produce rhamnolipids?

    Full text link
    • 

    corecore