256 research outputs found

    Structure and sequence analyses of Bacteroides proteins BVU_4064 and BF1687 reveal presence of two novel predominantly-beta domains, predicted to be involved in lipid and cell surface interactions.

    Get PDF
    BackgroundN-terminal domains of BVU_4064 and BF1687 proteins from Bacteroides vulgatus and Bacteroides fragilis respectively are members of the Pfam family PF12985 (DUF3869). Proteins containing a domain from this family can be found in most Bacteroides species and, in large numbers, in all human gut microbiome samples. Both BVU_4064 and BF1687 proteins have a consensus lipobox motif implying they are anchored to the membrane, but their functions are otherwise unknown. The C-terminal half of BVU_4064 is assigned to protein family PF12986 (DUF3870); the equivalent part of BF1687 was unclassified.ResultsCrystal structures of both BVU_4064 and BF1687 proteins, solved at the JCSG center, show strikingly similar three-dimensional structures. The main difference between the two is that the two domains in the BVU_4064 protein are connected by a short linker, as opposed to a longer insertion made of 4 helices placed linearly along with a strand that is added to the C-terminal domain in the BF1687 protein. The N-terminal domain in both proteins, corresponding to the PF12985 (DUF3869) domain is a β-sandwich with pre-albumin-like fold, found in many proteins belonging to the Transthyretin clan of Pfam. The structures of C-terminal domains of both proteins, corresponding to the PF12986 (DUF3870) domain in BVU_4064 protein and an unclassified domain in the BF1687 protein, show significant structural similarity to bacterial pore-forming toxins. A helix in this domain is in an analogous position to a loop connecting the second and third strands in the toxin structures, where this loop is implicated to play a role in the toxin insertion into the host cell membrane. The same helix also points to the groove between the N- and C-terminal domains that are loosely held together by hydrophobic and hydrogen bond interactions. The presence of several conserved residues in this region together with these structural determinants could make it a functionally important region in these proteins.ConclusionsStructural analysis of BVU_4064 and BF1687 points to possible roles in mediating multiple interactions on the cell-surface/extracellular matrix. In particular the N-terminal domain could be involved in adhesive interactions, the C-terminal domain and the inter-domain groove in lipid or carbohydrate interactions

    The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Get PDF
    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases

    A New Simulated Annealing Algorithm for the Multiple Sequence Alignment Problem: The approach of Polymers in a Random Media

    Full text link
    We proposed a probabilistic algorithm to solve the Multiple Sequence Alignment problem. The algorithm is a Simulated Annealing (SA) that exploits the representation of the Multiple Alignment between DD sequences as a directed polymer in DD dimensions. Within this representation we can easily track the evolution in the configuration space of the alignment through local moves of low computational cost. At variance with other probabilistic algorithms proposed to solve this problem, our approach allows for the creation and deletion of gaps without extra computational cost. The algorithm was tested aligning proteins from the kinases family. When D=3 the results are consistent with those obtained using a complete algorithm. For D>3D>3 where the complete algorithm fails, we show that our algorithm still converges to reasonable alignments. Moreover, we study the space of solutions obtained and show that depending on the number of sequences aligned the solutions are organized in different ways, suggesting a possible source of errors for progressive algorithms.Comment: 7 pages and 11 figure

    Numerous proteins with unique characteristics are degraded by the 26S proteasome following monoubiquitination

    Get PDF
    The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes

    Discrete kink dynamics in hydrogen-bonded chains I: The one-component model

    Get PDF
    We study topological solitary waves (kinks and antikinks) in a nonlinear one-dimensional Klein-Gordon chain with the on-site potential of a double-Morse type. This chain is used to describe the collective proton dynamics in quasi-one-dimensional networks of hydrogen bonds, where the on-site potential plays role of the proton potential in the hydrogen bond. The system supports a rich variety of stationary kink solutions with different symmetry properties. We study the stability and bifurcation structure of all these stationary kink states. An exactly solvable model with a piecewise ``parabola-constant'' approximation of the double-Morse potential is suggested and studied analytically. The dependence of the Peierls-Nabarro potential on the system parameters is studied. Discrete travelling-wave solutions of a narrow permanent profile are shown to exist, depending on the anharmonicity of the Morse potential and the cooperativity of the hydrogen bond (the coupling constant of the interaction between nearest-neighbor protons).Comment: 12 pages, 20 figure

    TOPS++FATCAT: Fast flexible structural alignment using constraints derived from TOPS+ Strings Model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein structure analysis and comparison are major challenges in structural bioinformatics. Despite the existence of many tools and algorithms, very few of them have managed to capture the intuitive understanding of protein structures developed in structural biology, especially in the context of rapid database searches. Such intuitions could help speed up similarity searches and make it easier to understand the results of such analyses.</p> <p>Results</p> <p>We developed a TOPS++FATCAT algorithm that uses an intuitive description of the proteins' structures as captured in the popular TOPS diagrams to limit the search space of the aligned fragment pairs (AFPs) in the flexible alignment of protein structures performed by the FATCAT algorithm. The TOPS++FATCAT algorithm is faster than FATCAT by more than an order of magnitude with a minimal cost in classification and alignment accuracy. For beta-rich proteins its accuracy is better than FATCAT, because the TOPS+ strings models contains important information of the parallel and anti-parallel hydrogen-bond patterns between the beta-strand SSEs (Secondary Structural Elements). We show that the TOPS++FATCAT errors, rare as they are, can be clearly linked to oversimplifications of the TOPS diagrams and can be corrected by the development of more precise secondary structure element definitions.</p> <p>Software Availability</p> <p>The benchmark analysis results and the compressed archive of the TOPS++FATCAT program for Linux platform can be downloaded from the following web site: <url>http://fatcat.burnham.org/TOPS/</url></p> <p>Conclusion</p> <p>TOPS++FATCAT provides FATCAT accuracy and insights into protein structural changes at a speed comparable to sequence alignments, opening up a possibility of interactive protein structure similarity searches.</p

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010

    Get PDF
    In recent decades, naturally growing mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals and nitrogen. Since 1990, the European moss survey has been repeated at five-yearly intervals. In 2010, the lowest concentrations of metals and nitrogen in mosses were generally found in northern Europe, whereas the highest concentrations were observed in (south-)eastern Europe for metals and the central belt for nitrogen. Averaged across Europe, since 1990, the median concentration in mosses has declined the most for lead (77%), followed by vanadium (55%), cadmium (51%), chromium (43%), zinc (34%), nickel (33%), iron (27%), arsenic (21%, since 1995), mercury (14%, since 1995) and copper (11%). Between 2005 and 2010, the decline ranged from 6% for copper to 36% for lead; for nitrogen the decline was 5%. Despite the Europe-wide decline, no changes or increases have been observed between 2005 and 2010 in some (regions of) countries

    The diterpenoid alkaloid noroxoaconitine is a Mapkap kinase 5 (MK5/PRAK) inhibitor

    Get PDF
    The mitogen-activated protein kinase-activated protein kinase MK5 is ubiquitously expressed in vertebrates and is implicated in cell proliferation, cytoskeletal remodeling, and anxiety behavior. This makes MK5 an attractive drug target. We tested several diterpenoid alkaloids for their ability to suppress MK5 kinase activity. We identified noroxoaconitine as an ATP competitor that inhibited the catalytic activity of MK5 in vitro (IC50 = 37.5 μM; Ki = 0.675 μM) and prevented PKA-induced nuclear export of MK5, a process that depends on kinase active MK5. MK5 is closely related to MK2 and MK3, and noroxoaconitine inhibited MK3- and MK5- but not MK2-mediated phosphorylation of the common substrate Hsp27. Molecular docking of noroxoaconitine into the ATP binding sites indicated that noroxoaconitine binds more strongly to MK5 than to MK3. Noroxoaconitine and derivatives may help in elucidating the precise biological functions of MK5 and may prove to have therapeutic values
    corecore