40 research outputs found

    Magnetic confinement of the superconducting condensate in superconductor/ferromagnet hybrid composites

    Full text link
    The influence of an inhomogeneous magnetic field on the magnetoresistance of thin Al films, used in different superconductor/ferromagnet hybrids, has been investigated. Two contrasting magnetic textures with out-of-plane magnetization are explored, namely (i) a plain film in a multidomain state and (ii) an array of micro-sized dots. The stray fields of the ferromagnetic structures confine the superconducting condensate and, accordingly, modify the condition for the nucleation of superconductivity. By switching between different magnetic states of the ferromagnet, this confinement can be tuned at will, hereby reversibly changing the dependence of the critical temperature Tc on an external magnetic field H. In particular, the continuous evolution from a conventional linear Tc(H) dependence with a single maximum to a reentrant superconducting phase boundary with multiple Tc peaks has been demonstrated

    Vortex core deformation and stepper motor behavior in a superconducting ratchet

    Get PDF
    We investigated experimentally the frequency dependence of a superconducting vortex ratchet effect by means of electrical transport measurements and modeled it theoretically using the time dependent Ginzburg-Landau formalism. We demonstrate that the high frequency vortex behavior can be described as a discrete motion of a particle in a periodic potential, i.e. the so called stepper motor behavior. Strikingly, in the more conventional low frequency response a transition takes place from an Abrikosov vortex rectifier to a phase slip line rectifier. This transition is characterized by a strong increase in the rectified voltage and the appearance of a pronounced hysteretic behavior.Comment: 4 pages, 4 figure

    Distributed information consensus filters for simultaneous input and state estimation

    Get PDF
    This paper describes the distributed information filtering where a set of sensor networks are required to simultaneously estimate input and state of a linear discrete-time system from collaborative manner. Our research purpose is to develop a consensus strategy in which sensor nodes communicate within the network through a sequence of Kalman iterations and data diffusion. A novel recursive information filtering is proposed by integrating input estimation error into measurement data and weighted information matrices. On the fusing process, local system state filtering transmits estimation information using the consensus averaging algorithm, which penalizes the disagreement in a dynamic manner. A simulation example is provided to compare the performance of the distributed information filtering with optimal Gillijins–De Moor’s algorithm

    Gender-Specific Modulation of the Response to Arterial Injury by Soluble Guanylate Cyclase α1

    Get PDF
    Objective: Soluble guanylate cyclase (sGC), a heterodimer composed of α and β subunits, synthesizes cGMP in response to nitric oxide (NO). NO modulates vascular tone and structure but the relative contributions of cGMP-dependent versus cGMP-independent mechanisms remain uncertain. We studied the response to vascular injury in male (M) and female (F) mice with targeted deletion of exon 6 of the sGCα1 subunit (sGCα1-/-), resulting in a non-functional heterodimer. Methods: We measured aortic cGMP levels and mRNA transcripts encoding sGC α1, α2, and β1 subunits in wild type (WT) and sGCa1-/- mice. To study the response to vascular injury, BrdU-incorporation and neointima formation (maximum intima to media (I/M) ratio) were determined 5 and 28 days after carotid artery ligation, respectively. Results: Aortic cGMP levels were 4-fold higher in F than in M mice in both genotypes, and, within each gender, 4-fold higher in WT than in sGCa1-/-. In contrast, sGCα1, sGCα2, and sGCβ1 mRNA expression did not differ between groups. 3H-thymidine incorporation in cultured sGCa1-/- smooth muscle cells (SMC) was 27%±12% lower than in WT SMC and BrdU-incorporation in carotid arteries 5 days after ligation was significantly less in sGCa1-/- M than in WT M. Neointima area and I/M 28 days after ligation were 65% and 62% lower in sGCa1-/- M than in WT M mice (p<0,05 for both) but were not different in F mice. Conclusion: Functional deletion of sGCa1 resulted in reduced cGMP levels in male sGCa1-/- mice and a gender-specific effect on the adaptive response to vascular injury

    Nucleation of superconductivity and vortex matter in superconductor - ferromagnet hybrids

    Full text link
    The theoretical and experimental results concerning the thermodynamical and low-frequency transport properties of hybrid structures, consisting of spatially-separated conventional low-temperature superconductor (S) and ferromagnet (F), is reviewed. Since the superconducting and ferromagnetic parts are assumed to be electrically insulated, no proximity effect is present and thus the interaction between both subsystems is through their respective magnetic stray fields. Depending on the temperature range and the value of the external field H_{ext}, different behavior of such S/F hybrids is anticipated. Rather close to the superconducting phase transition line, when the superconducting state is only weakly developed, the magnetization of the ferromagnet is solely determined by the magnetic history of the system and it is not influenced by the field generated by the supercurrents. In contrast to that, the nonuniform magnetic field pattern, induced by the ferromagnet, strongly affect the nucleation of superconductivity leading to an exotic dependence of the critical temperature T_{c} on H_{ext}. Deeper in the superconducting state the effect of the screening currents cannot be neglected anymore. In this region of the phase diagram various aspects of the interaction between vortices and magnetic inhomogeneities are discussed. In the last section we briefly summarize the physics of S/F hybrids when the magnetization of the ferromagnet is no longer fixed but can change under the influence of the superconducting currents. As a consequence, the superconductor and ferromagnet become truly coupled and the equilibrium configuration of this "soft" S/F hybrids requires rearrangements of both, superconducting and ferromagnetic characteristics, as compared with "hard" S/F structures.Comment: Topical review, submitted to Supercond. Sci. Tech., 67 pages, 33 figures, 439 reference

    Superconducting spintronics

    Get PDF
    The interaction between superconducting and spin-polarized orders has recently emerged as a major research field following a series of fundamental breakthroughs in charge transport in superconductor-ferromagnet heterodevices which promise new device functionality. Traditional studies which combine spintronics and superconductivity have mainly focused on the injection of spin-polarized quasiparticles into superconducting materials. However, a complete synergy between superconducting and magnetic orders turns out to be possible through the creation of spin-triplet Cooper pairs which are generated at carefully engineered superconductor interfaces with ferromagnetic materials. Currently, there is intense activity focused on identifying materials combinations which merge superconductivity and spintronics in order to enhance device functionality and performance. The results look promising: it has been shown, for example, that superconducting order can greatly enhance central effects in spintronics such as spin injection and magnetoresistance. Here, we review the experimental and theoretical advances in this field and provide an outlook for upcoming challenges related to the new concept of superconducting spintronics.J.L. was supported by the Research Council of Norway, Grants No. 205591 and 216700. J.W.A.R. was supported by the UK Royal Society and the Leverhulme Trust through an International Network Grant (IN-2013-033).This is the accepted manuscript. The final version is available at http://www.nature.com/nphys/journal/v11/n4/full/nphys3242.html

    Asymmetric Optical Second-Harmonic Generation from Chiral G-Shaped Gold Nanostructures

    Full text link
    We present a new electromagnetic phenomenon-the asymmetric second-harmonic generation from planar chiral structures. The effect consists in distinguishing the handedness of a chiral material by rotating the sample in an experiment involving solely linearly polarized light. This phenomenon originates in the surface plasmon resonance of chiral gold nanostructures, where homodyne interference of anisotropic and chiral electric and/or magnetic multipoles appears to play an important role
    corecore