1,163 research outputs found

    The origin of stiffening in cross-linked semiflexible networks

    Get PDF
    Strain stiffening of protein networks is explored by means of a finite strain analysis of a two-dimensional network model of cross-linked semiflexible filaments. The results show that stiffening is caused by non-affine network rearrangements that govern a transition from a bending dominated response at small strains to a stretching dominated response at large strains. Thermally-induced filament undulations only have a minor effect; they merely postpone the transition.Comment: 5 pages, 5 figure

    Cavity atom optics and the `free atom laser'

    Full text link
    The trap environment in which Bose-Einstein condensates are generated and/or stored strongly influences the way they interact with light. The situation is analogous to cavity QED in quantum optics, except that in the present case, one tailors the matter-wave mode density rather than the density of modes of the optical field. Just as in QED, for short times, the atoms do not sense the trap and propagate as in free space. After times long enough that recoiling atoms can probe the trap environment, however, the way condensates and light fields are mutually influenced differs significantly from the free-space situation. We use as an example the condensate collective atomic recoil laser, which is the atomic matter-wave analog of the free-electron laser.Comment: To be published in a special edition of Optics Communications in honor of the 60th birthday of Marlan Scull

    Mapping the increasing risk of human alveolar echinococcosis in Limburg, The Netherlands

    Get PDF
    The parasite Echinococcus multilocularis was first detected in The Netherlands in 1996 and repeated studies have shown that the parasite subsequently spread in the local population of foxes in the province of Limburg. It was not possible to quantify the human risk of alveolar echinococcosis because no relationship between the amount of parasite eggs in the environment and the probability of infection in humans was known. Here, we used the spread of the parasite in The Netherlands as a predictor, together with recently published historical records of the epidemiology of alveolar echinococcosis in Switzerland, to achieve a relative quantification of the risk. Based on these analyses, the human risk in Limburg was simulated and up to three human cases are predicted by 2018. We conclude that the epidemiology of alveolar echinococcosis in The Netherlands might have changed from a period of negligible risk in the past to a period of increasing risk in the forthcoming year

    Nimodipine has no effect on the cerebral circulation in conscious pigs, despite an increase in cardiac output

    Get PDF
    1. We studied the effects of four doses of nimodipine (0.5, 1, 2 and 4 micrograms kg-1 min-1) on systemic haemodynamics and on regional vascular beds, in particular the cerebral circulation, in conscious pigs. 2. Nimodipine caused dose-dependent, probably reflex-mediated, increases in heart rate (42% with the highest dose) and cardiac output (54%), while arterial blood pressure was only minimally affected. Left ventricular end-diastolic pressure and systemic vascular resistance decreased dose-dependently (35-40% at the highest dose) while stroke volume remained unchanged. 3. Total brain blood flow was not affected by the drug. Furthermore, we could not demonstrate any regional cerebral differences, as blood flows to both cerebral hemispheres as well as the diencephalon, cerebellum and brain stem remained unchanged.4. Blood flow to the kidneys, liver, small intestine and skin also did not change. Nimodipine caused dose-dependent increases in blood flow to the stomach (95%), myocardium (97%) and adrenal glands (102%), while blood flow to skeletal muscles (267%) increased most. 5. It is concluded that in the conscious pig, nimodipine is an arterial vasodilator which shows some selectivity for the skeletal muscle vasculature but does not increase total or regional cerebral blood flow.</p

    Statistical approach to dislocation dynamics: From dislocation correlations to a multiple-slip continuum plasticity theory

    Get PDF
    Due to recent successes of a statistical-based nonlocal continuum crystal plasticity theory for single-glide in explaining various aspects such as dislocation patterning and size-dependent plasticity, several attempts have been made to extend the theory to describe crystals with multiple slip systems using ad-hoc assumptions. We present here a mesoscale continuum theory of plasticity for multiple slip systems of parallel edge dislocations. We begin by constructing the Bogolyubov-Born-Green-Yvon-Kirkwood (BBGYK) integral equations relating different orders of dislocation correlation functions in a grand canonical ensemble. Approximate pair correlation functions are obtained for single-slip systems with two types of dislocations and, subsequently, for general multiple-slip systems of both charges. The effect of the correlations manifests itself in the form of an entropic force in addition to the external stress and the self-consistent internal stress. Comparisons with a previous multiple-slip theory based on phenomenological considerations shall be discussed.Comment: 12 pages, 3 figure

    Three-dimensional cross-linked F-actin networks:Relation between network architecture and mechanical behavior

    Get PDF
    Numerical simulations are reported for the response of three-dimensional cross-linked F-actin networks when subjected to large deformations. In addition to the physiological parameters such as actin and cross-linker concentration, the model explicitly accounts for filament properties and network architecture. Complementary to two-dimensional studies, we find that the strain-stiffening characteristics depend on network architecture through the local topology around cross-links

    Micro-plasticity and intermittent dislocation activity in a simplified micro structural model

    Full text link
    Here we present a model to study the micro-plastic regime of a stress-strain curve. In this model an explicit dislocation population represents the mobile dislocation content and an internal shear-stress field represents a mean-field description of the immobile dislocation content. The mobile dislocations are constrained to a simple dipolar mat geometry and modelled via a dislocation dynamics algorithm, whilst the shear-stress field is chosen to be a sinusoidal function of distance along the mat direction. The latter, defined by a periodic length and a shear-stress amplitude, represents a pre-existing micro-structure. These model parameters, along with the mobile dislocation density, are found to admit a diversity of micro-plastic behaviour involving intermittent plasticity in the form of a scale-free avalanche phenomenon, with an exponent for the strain burst magnitude distribution similar to those seen in experiment and more complex dislocation dynamics simulations.Comment: 30 pages, 12 figures, to appear in "Modelling and Simulation in Materials Science and Engineering

    High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP2

    Get PDF
    We report a femtosecond optical parametric oscillator (OPO) for the mid-infrared (mid-IR), generating a record average power of 110 mW at 7 μm. The OPO, based on CdSiP2 (CSP) as the nonlinear crystal, provides idler wavelength tuning across 6540–7186 nm with spectral bandwidths >400  nm at −10  dB level over the entire range, and a maximum bandwidth of 478 nm at 6.9 μm. To the best of our knowledge, this is the highest average power generated from a femtosecond OPO in the deep mid-IR. The OPO also provides near-IR signal wavelengths tunable across 1204–1212 nm with a usable power of 450 mW in 418-fs pulses at 1207 nm. The simultaneously measured signal and idler power exhibit a passive stability better than 1.6% rms and 3% rms, respectively. A mid-IR idler spectral stability with a standard deviation of the frequency fluctuations better than 40 MHz over 15 min, limited by the measurement resolution, is realized. Using the mid-IR idler from the CSP OPO, we perform Fourier-transform spectroscopy to detect liquid phase organic solvent, toluene (C7H8), in the molecular fingerprint region.Postprint (author’s final draft
    • …
    corecore