77 research outputs found

    Dye-sensitized Er3+-doped CaF2 nanoparticles for enhanced near-infrared emission at 1.5 μm

    Get PDF
    Lanthanide (Ln)-doped nanoparticles have shown potential for applications in various fields. However, the weak and narrow absorption bands of the Ln ions (Ln3+), hamper efficient optical pumping and severely limit the emission intensity. Dye sensitization is a promising way to boost the near-infrared (NIR) emission of Er3+, hence promoting possible application in optical amplification at 1.5 μm, a region that is much sought after for telecommunication technology. Herein, we introduce the fluorescein isothiocyanate (FITC) organic dye with large absorption cross section as energy donor of small-sized (∼3.6 nm) Er3+-doped CaF2 nanoparticles. FITC molecules on the surface of CaF2 work as antennas to efficiently absorb light, and provide the indirect sensitization of Er3+ boosting its emission. In this paper, we employ photoluminescence and transient absorption spectroscopy, as well as density functional theory calculations, to provide an in-depth investigation of the FITC → Er3+ energy transfer process. We show that an energy transfer efficiency of over 89% is achieved in CaF2:Er3+@FITC nanoparticles resulting in a 28 times enhancement of the Er3+ NIR emission with respect to bare CaF2:Er3+. Through the multidisciplinary approach used in our work, we are able to show that the reason for such high sensitization efficiency stems from the suitable size and geometry of the FITC dye with a localized transition dipole moment at a short distance from the surface of the nanoparticle

    Measurement of electron-neutrino electron elastic scattering

    Get PDF
    The cross section for the elastic scattering reaction nu_e+e- -> nu_e+e- was measured by the Liquid Scintillator Neutrino Detector using a mu+ decay-at-rest nu_e beam at the Los Alamos Neutron Science Center. The standard model of electroweak physics predicts a large destructive interference between the charge current and neutral current channels for this reaction. The measured cross section, sigma_{nu_e e-}=[10.1 +- 1.1(stat.) +- 1.0(syst.)]x E_{nu_e} (MeV) x 10^{-45} cm^2, agrees well with standard model expectations. The measured value of the interference parameter, I=-1.01 +- 0.13(stat.) +- 0.12(syst.), is in good agreement with the standard model expectation of I^{SM}=-1.09. Limits are placed on neutrino flavor-changing neutral currents. An upper limit on the muon-neutrino magnetic moment of 6.8 x 10^{-10} mu_{Bohr} is obtained using the nu_mu and \bar{nu}_mu fluxes from pi+ and mu+ decay.Comment: 22 pages, 11 figure

    Evidence for Diffractive Charm Production in nu_mu Fe and nubar_mu Fe Scattering at the Tevatron

    Full text link
    We present evidence for the diffractive processes nu_mu Fe -> mu^- D_s^+ (D_s^*+) Fe and nubar_mu Fe -> mu^+ D_s^- (D_s^*-) Fe using the Fermilab SSQT neutrino beam and the Lab E neutrino detector. We observe the neutrino trident reactions nu_mu Fe -> nu_mu mu^- mu^+ Fe and nubar_mu Fe -> nubar_mu mu^+ mu^- Fe at rates consistent with Standard Model expectations. We see no evidence for neutral-current production of J/psi via either diffractive or deep inelastic scattering mechanisms.Comment: 13 pages, submitted to Phys. Rev. D, FERMILAB-Pub-99/269-

    A determination of electroweak parameters from Z0→μ+μ- (γ)

    Full text link

    A measurement of the Z0 leptonic partial widths and the vector and axial vector coupling constants

    Get PDF
    We have measured the partial widths of the Z0 into lepton pairs, and the forward-backward charge asymmetry for the process e+e--->[mu]+[mu]- using the L3 detector at LEP. We obtain an average [Gamma]ll of 83.0+/-2.1+/-1.1 MeV.From this result and the asymmetry measurement, we extract the values of the vector and axial vector couplings of the Z0 to leptons: grmv=-0.066-0.027+0.046 and grmA= -0.495-0.007+0.007.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28666/3/0000483.pd

    Controlling energy transfer routes in dye-sensitized lanthanide-based nanoparticles for enhanced emission

    No full text
    Near-infrared luminescent lanthanide (Ln)-doped nanomaterials are currently attracting high interest in view of their sharp f-f emission peaks and long luminescence lifetimes, which establish a unique value for the development of optical amplifiers, lasers and biosensors. To improve the optical pumping of the weakly absorbing lanthanide ions (Ln3+), the doped nanoparticles are coupled with an organic dye sensitizer able to efficiently harvest light and subsequently transfer the absorbed energy to the emitter. However, this through-space "remote" sensitization is severely subjected to energy losses due to competitive energy migration or deactivation routes limiting the overall luminescence quantum yields. The implementation of the Förster's model of resonance energy transfer on the basis of advanced ultra-fast transient absorption and photoluminescence spectroscopy with the support of density functional theory calculations demonstrate that the sensitization efficiency from the dye to the doped nanoparticle is strictly regulated by the geometry and localization of the transition dipole moment of the dye molecule. Within the nanoparticle, the energy transfer pathways can be harnessed through the spatial confinement of â€energy bridges', accepting energy from the surface dyes and donating to core emitters. We show that the FITC (fluorescein-isothiocyanate) dye allows reaching exceptional sensitization efficiency close to unity for the NIR-emitting triad Nd3+, Er3+ and Yb3+

    Slow Hole Localization and Fast Electron Cooling in Cu-Doped InP/ZnSe Quantum Dots

    No full text
    Impurity doping of low-dimensional semiconductors is an interesting route towards achieving control over carrier dynamics and energetics, e.g., to improve hot carrier extraction, or to obtain strongly Stokes shifted luminescence. Such studies remain, however, underexplored for the emerging family of III-V colloidal quantum dots (QDs). Here, we show through a detailed global analysis of multiresonant pump-probe spectroscopy that electron cooling in copper-doped InP quantum dot (QDs) proceeds on subpicosecond time scales. Conversely, hole localization on Cu dopants is remarkably slow (1.8 ps), yet still leads to very efficient subgap emission. Due to this slow hole localization, common Auger assisted pathways in electron cooling cannot be blocked by Cu doping III-V systems, in contrast with the case of II-VI QDs. Finally, we argue that the structural relaxation around the Cu dopants, estimated to impart a reorganization energy of 220 meV, most likely proceeds simultaneously with the localization itself leading to efficient luminescence

    Slow hole localization and fast electron cooling in Cu-doped InP/ZnSe quantum dots

    No full text
    Impurity doping of low-dimensional semiconductors is an interesting route towards achieving control over carrier dynamics and energetics, e.g., to improve hot carrier extraction, or to obtain strongly Stokes shifted luminescence. Such studies remain, however, underexplored for the emerging family of III-V colloidal quantum dots (QDs). Here, we show through a detailed global analysis of multiresonant pump-probe spectroscopy that electron cooling in copper-doped InP quantum dot (QDs) proceeds on subpicosecond time scales. Conversely, hole localization on Cu dopants is remarkably slow (1.8 ps), yet still leads to very efficient subgap emission. Due to this slow hole localization, common Auger assisted pathways in electron cooling cannot be blocked by Cu doping III-V systems, in contrast with the case of II-VI QDs. Finally, we argue that the structural relaxation around the Cu dopants, estimated to impart a reorganization energy of 220 meV, most likely proceeds simultaneously with the localization itself leading to efficient luminescence

    The Fine-Structure Constant as a Ruler for the Band-Edge Light Absorption Strength of Bulk and Quantum-Confined Semiconductors

    Get PDF
    Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension
    corecore