170 research outputs found

    Geographical and temporal body size variation in a reptile: roles of sex, ecology, phylogeny and ecology structured in phylogeny.

    Get PDF
    Geographical body size variation has long interested evolutionary biologists, and a range of mechanisms have been proposed to explain the observed patterns. It is considered to be more puzzling in ectotherms than in endotherms, and integrative approaches are necessary for testing non-exclusive alternative mechanisms. Using lacertid lizards as a model, we adopted an integrative approach, testing different hypotheses for both sexes while incorporating temporal, spatial, and phylogenetic autocorrelation at the individual level. We used data on the Spanish Sand Racer species group from a field survey to disentangle different sources of body size variation through environmental and individual genetic data, while accounting for temporal and spatial autocorrelation. A variation partitioning method was applied to separate independent and shared components of ecology and phylogeny, and estimated their significance. Then, we fed-back our models by controlling for relevant independent components. The pattern was consistent with the geographical Bergmann's cline and the experimental temperature-size rule: adults were larger at lower temperatures (and/or higher elevations). This result was confirmed with additional multi-year independent data-set derived from the literature. Variation partitioning showed no sex differences in phylogenetic inertia but showed sex differences in the independent component of ecology; primarily due to growth differences. Interestingly, only after controlling for independent components did primary productivity also emerge as an important predictor explaining size variation in both sexes. This study highlights the importance of integrating individual-based genetic information, relevant ecological parameters, and temporal and spatial autocorrelation in sex-specific models to detect potentially important hidden effects. Our individual-based approach devoted to extract and control for independent components was useful to reveal hidden effects linked with alternative non-exclusive hypothesis, such as those of primary productivity. Also, including measurement date allowed disentangling and controlling for short-term temporal autocorrelation reflecting sex-specific growth plasticity

    Divergence with gene flow and fine-scale phylogeographical structure in the wedge-billed woodcreeper, Glyphorynchus spirurus, a Neotropical rainforest bird.

    Get PDF
    Determining the relative roles of vicariance and selection in restricting gene flow between populations is of central importance to the evolutionary process of population divergence and speciation. Here we use molecular and morphological data to contrast the effect of isolation (by mountains and geographical distance) with that of ecological factors (altitudinal gradients) in promoting differentiation in the wedge-billed woodcreeper, Glyphorynchus spirurus, a tropical forest bird, in Ecuador. Tarsus length and beak size increased relative to body size with altitude on both sides of the Andes, and were correlated with the amount of moss on tree trunks, suggesting the role of selection in driving adaptive divergence. In contrast, molecular data revealed a considerable degree of admixture along these altitudinal gradients, suggesting that adaptive divergence in morphological traits has occurred in the presence of gene flow. As suggested by mitochondrial DNA sequence data, the Andes act as a barrier to gene flow between ancient subspecific lineages. Genome-wide amplified fragment length polymorphism markers reflected more recent patterns of gene flow and revealed fine-scale patterns of population differentiation that were not detectable with mitochondrial DNA, including the differentiation of isolated coastal populations west of the Andes. Our results support the predominant role of geographical isolation in driving genetic differentiation in G. spirurus, yet suggest the role of selection in driving parallel morphological divergence along ecological gradients

    Microhabitat selection in the common lizard: implications of biotic interactions, age, sex, local processes, and model transferability among populations.

    Get PDF
    Modeling species' habitat requirements are crucial to assess impacts of global change, for conservation efforts and to test mechanisms driving species presence. While the influence of abiotic factors has been widely examined, the importance of biotic factors and biotic interactions, and the potential implications of local processes are not well understood. Testing their importance requires additional knowledge and analyses at local habitat scale. Here, we recorded the locations of species presence at the microhabitat scale and measured abiotic and biotic parameters in three different common lizard (Zootoca vivipara) populations using a standardized sampling protocol. Thereafter, space use models and cross-evaluations among populations were run to infer local processes and estimate the importance of biotic parameters, biotic interactions, sex, and age. Biotic parameters explained more variation than abiotic parameters, and intraspecific interactions significantly predicted the spatial distribution. Significant differences among populations in the relationship between abiotic parameters and lizard distribution, and the greater model transferability within populations than between populations are in line with effects predicted by local adaptation and/or phenotypic plasticity. These results underline the importance of including biotic parameters and biotic interactions in space use models at the population level. There were significant differences in space use between sexes, and between adults and yearlings, the latter showing no association with the measured parameters. Consequently, predictive habitat models at the population level taking into account different sexes and age classes are required to understand a specie's ecological requirements and to allow for precise conservation strategies. Our study therefore stresses that future predictive habitat models at the population level and their transferability should take these parameters into account

    Age-dependent effects of moderate differences in environmental predictability forecasted by climate change, experimental evidence from a short-lived lizard (Zootoca vivipara)

    Get PDF
    Whether and how differences in environmental predictability affect life-history traits is controversial and may depend on mean environmental conditions. Solid evidence for effects of environmental predictability are lacking and thus, the consequences of the currently observed and forecasted climate-change induced reduction of precipitation predictability are largely unknown. Here we experimentally tested whether and how changes in the predictability of precipitation affect growth, reproduction, and survival of common lizard Zootoca vivipara. Precipitation predictability affected all three age classes. While adults were able to compensate the treatment effects, yearlings and juvenile females were not able to compensate negative effects of less predictable precipitation on growth and body condition, respectively. Differences among the age-classes’ response reflect differences (among age-classes) in the sensitivity to environmental predictability. Moreover, effects of environmental predictability depended on mean environmental conditions. This indicates that integrating differences in environmental sensitivity, and changes in averages and the predictability of climatic variables will be key to understand whether species are able to cope with the current climatic change

    Conflict over multiple-partner mating between males and females of the polygynandrous common lizards.

    Get PDF
    The optimal number of mate partners for females rarely coincides with that for males, leading to a potential sexual conflict over multiple-partner mating. This suggests that the population sex ratio may affect multiple-partner mating and thus multiple paternity. We investigate the relationship between multiple paternity and the population sex ratio in the polygynandrous common lizard (Lacerta vivipara). In six populations the adult sex ratio was biased toward males, and in another six populations the adult sex ratio was biased toward females, the latter corresponding to the average adult sex ratio encountered in natural populations. In males the frequency and the degree of polygyny were lower in male-biased populations, as expected if competition among males determines polygyny. In females the frequency of polyandry was not different between treatments, and polyandrous females produced larger clutches, suggesting that polyandry might be adaptive. However, in male-biased populations females suffered from reduced reproductive success compared to female-biased populations, and the number of mate partners increased with female body size in polyandrous females. Polyandrous females of male-biased populations showed disproportionately more mating scars, indicating that polyandrous females of male-biased populations had more interactions with males and suggesting that the degree of multiple paternity is controlled by male sexual harassment. Our results thus imply that polyandry may be hierarchically controlled, with females controlling when to mate with multiple partners and male sexual harassment being a proximate determinant of the degree of multiple paternity. The results are also consistent with a sexual conflict in which male behaviors are harmful to females

    Slope Stability Analysis Based on Autocorrelated Shear Strength Parameters

    Get PDF
    The stability of a slope is governed by the spatial average of the shear strength over the extent of the failure surface. In Eurocode 7 the average soil properties are taken into account by defining the characteristic soil parameter as being "a cautious estimate of the value affecting the occurrence of the limit state” and further stating that this value should be based on, among other factors, "the extent of the zone of ground governing the behavior of the geotechnical structure at the limit state being considered”. To completely quantify the characteristic shear strength along a failure surface, three statistical values are required: the arithmetic mean, the variance and the spatial correlation. The mean soil properties and to a lesser degree the variance (or equivalently the standard deviation or the coefficient of variation) are known and used by most geotechnical engineers for the selection of characteristic soil properties. The scale of fluctuation, however, is not generally used. The scale of fluctuation is a measure of the soil spatial variability and can be understood as the range within which soil properties are correlated and beyond which they are statistically uncorrelated. This paper investigates the influence of the variability of shear strength on the reliability of slopes based on simulated autocorrelated random fields created by the turning bands method. In particular, the influence of the length of the failure surface on the characteristic value is investigated. Numerical Monte Carlo analyses verify the validity of a simplified practical approach presented to determine the characteristic soil properties according to Eurocode 7

    Slope Stability Analysis Based on Autocorrelated Shear Strength Parameters

    Get PDF
    The stability of a slope is governed by the spatial average of the shear strength over the extent of the failure surface. In Eurocode 7 the average soil properties are taken into account by defining the characteristic soil parameter as being "a cautious estimate of the value affecting the occurrence of the limit state” and further stating that this value should be based on, among other factors, "the extent of the zone of ground governing the behavior of the geotechnical structure at the limit state being considered”. To completely quantify the characteristic shear strength along a failure surface, three statistical values are required: the arithmetic mean, the variance and the spatial correlation. The mean soil properties and to a lesser degree the variance (or equivalently the standard deviation or the coefficient of variation) are known and used by most geotechnical engineers for the selection of characteristic soil properties. The scale of fluctuation, however, is not generally used. The scale of fluctuation is a measure of the soil spatial variability and can be understood as the range within which soil properties are correlated and beyond which they are statistically uncorrelated. This paper investigates the influence of the variability of shear strength on the reliability of slopes based on simulated autocorrelated random fields created by the turning bands method. In particular, the influence of the length of the failure surface on the characteristic value is investigated. Numerical Monte Carlo analyses verify the validity of a simplified practical approach presented to determine the characteristic soil properties according to Eurocode 7

    Biceps femoris long head morphology in youth competitive alpine skiers is associated with age, biological maturation and traumatic lower extremity injuries

    Get PDF
    Lower extremity injuries are common in competitive alpine skiers, and the knee and lower leg are often affected. The hamstring muscles, especially the biceps femoris long head (BFlh), can stabilize the knee and the hip and may counteract various adverse loading patterns during typical mechanisms leading to severe lower extremity injuries. The aim of the present study was to describe BFlh morphology in youth competitive alpine skiers in relation to sex, age and biological maturation and to investigate its association with the occurrence of traumatic lower extremity injuries in the upcoming season. 95 youth skiers underwent anthropometric measurements, maturity offset estimations and ultrasound assessment, followed by 12-months prospective injury surveillance. Unpaired t tests showed that the two sexes did not differ in BFlh morphology, including fascicle length (Lf), pennation angle (PA), muscle thickness (MT) and average anatomical cross-sectional area (ACSAavg). In contrast, U16 skiers had longer fascicles than U15 skiers (9.5 ± 1.3 cm vs 8.9 ± 1.3 cm, p < 0.05). Linear regression analyses revealed that maturity offset was associated with Lf (R2 = 0.129, p < 0.001), MT (R2 = 0.244, p < 0.001) and ACSAavg (R2 = 0.065, p = 0.007). No association was found between maturity offset and PA (p = 0.524). According to a binary logistic regression analysis, ACSAavg was significantly associated with the occurrence of traumatic lower extremity injuries (Chi-square = 4.627, p = 0.031, RNagelkerke2 = 0.064, Cohen f = 0.07). The present study showed that BFlh morphology is age- and biological maturation-dependent and that BFlh ACSAavg can be considered a relevant modifiable variable associated with lower extremity injuries in youth competitive alpine skiers

    Biceps femoris long head morphology in youth competitive alpine skiers is associated with age, biological maturation and traumatic lower extremity injuries

    Full text link
    Lower extremity injuries are common in competitive alpine skiers, and the knee and lower leg are often affected. The hamstring muscles, especially the biceps femoris long head (BFlh), can stabilize the knee and the hip and may counteract various adverse loading patterns during typical mechanisms leading to severe lower extremity injuries. The aim of the present study was to describe BFlh morphology in youth competitive alpine skiers in relation to sex, age and biological maturation and to investigate its association with the occurrence of traumatic lower extremity injuries in the upcoming season. 95 youth skiers underwent anthropometric measurements, maturity offset estimations and ultrasound assessment, followed by 12-months prospective injury surveillance. Unpaired t tests showed that the two sexes did not differ in BFlh morphology, including fascicle length (Lf), pennation angle (PA), muscle thickness (MT) and average anatomical cross-sectional area (ACSAavg). In contrast, U16 skiers had longer fascicles than U15 skiers (9.5 ± 1.3 cm vs 8.9 ± 1.3 cm, p < 0.05). Linear regression analyses revealed that maturity offset was associated with Lf (R 2 = 0.129, p < 0.001), MT (R 2 = 0.244, p < 0.001) and ACSAavg (R 2 = 0.065, p = 0.007). No association was found between maturity offset and PA (p = 0.524). According to a binary logistic regression analysis, ACSAavg was significantly associated with the occurrence of traumatic lower extremity injuries (Chi-square = 4.627, p = 0.031, RNagelkerke 2 = 0.064, Cohen f = 0.07). The present study showed that BFlh morphology is age- and biological maturation-dependent and that BFlh ACSAavg can be considered a relevant modifiable variable associated with lower extremity injuries in youth competitive alpine skiers. Keywords: alpine ski racing; hamstrings; injury prevention; muscle morphology; ultrasound imaging; youth athlete

    Reliability of panoramic ultrasound imaging and agreement with magnetic resonance imaging for the assessment of lumbar multifidus anatomical cross-sectional area

    Get PDF
    The aim of this study was to investigate the reliability of panoramic ultrasound (US) imaging and agreement with magnetic resonance imaging (MRI) for assessing the average lumbar multifidus anatomical cross-sectional area between the lumbar vertebral bodies L3-L5 (i.e., LMF ACSAL3L5_{L3-L5}). US and MRI scans of 20 male youth competitive alpine skiers were collected. To test the intra- and interrater reliability of US, transversal panoramic scans were analyzed on two different days by the same rater and the analysis of the first day was compared with the analysis of a second rater. To examine the agreement between US and MRI, Bland-Altman analysis was performed. Intrarater reliability was excellent, and interrater reliability was weak to good for both sides. The bias between MRI and US was - 0.19 ± 0.90 cm2^{2} (2.68 ± 12.30%) for the left side and - 0.04 ± 0.98 cm2^{2} (- 1.11 ± 12.93%) for the right side (i.e., for both sides US slightly overestimated LMF ACSAL3L5_{L3-L5} on average). The limits of agreement were - 1.95 to 1.57 cm2^{2} (- 26.70 to 21.30%) for the left side and - 1.95 to 1.88 cm2^{2} (- 26.46 to 24.24%) for the right side. Panoramic US imaging may be considered a method with excellent intrarater and weak to good interrater reliability for assessing LMF ACSAL3L5_{L3-L5}. Comparison with MRI showed large individual differences in some cases, but an acceptable bias between the two imaging modalities
    corecore