2,921 research outputs found

    Nano-Hall sensors with granular Co-C

    Full text link
    We analyzed the performance of Hall sensors with different Co-C ratios, deposited directly in nano-structured form, using Co2(CO)8Co_2(CO)_8 gas molecules, by focused electron or ion beam induced deposition. Due to the enhanced inter-grain scattering in these granular wires, the Extraordinary Hall Effect can be increased by two orders of magnitude with respect to pure Co, up to a current sensitivity of 1Ω/T1 \Omega/T. We show that the best magnetic field resolution at room temperature is obtained for Co ratios between 60% and 70% and is better than 1μT/Hz1/21 \mu T/Hz^{1/2}. For an active area of the sensor of 200×200nm2200 \times 200 nm^2, the room temperature magnetic flux resolution is ϕmin=2×10−5ϕ0\phi_{min} = 2\times10^{-5}\phi_0, in the thermal noise frequency range, i.e. above 100 kHz.Comment: 5 pages, 4 figure

    Identifying and preventing burnout in young oncologists, an overwhelming challenge in the COVID-19 era: a study of the Spanish Society of Medical Oncology (SEOM)

    Get PDF
    COVID-19; Esgotament professional; Oncòlegs jovesCOVID-19; Agotamiento profesional; Oncólogos jóvenesCOVID-19; Professional burnout; Young oncologistsBackground Young oncologists are at particular risk of professional burnout, and this could have a significant impact on their health and care of their patients. The coronavirus disease 2019 (COVID-19) pandemic has forced rapid changes in professionals' jobs and training, with the consequent physical and psychological effects. We aimed to characterize burnout levels and determinants in young oncologists, and the effects of the pandemic on their training and health. Methods Two online surveys were conducted among oncology residents and young oncology specialists in Spain. The first addressed professional burnout and its determinants before the COVID-19 pandemic, while the second analyzed the impact of the pandemic on health care organization, training, and physical and psychological health in the same population. Results In total, 243 respondents completed the first survey, and 263 the second; 25.1% reported significant levels of professional burnout. Burnout was more common among medical oncology residents (28.2%), mainly in their second year of training. It was significantly associated with a poor work–life balance, inadequate vacation time, and the burnout score. Nearly three-quarters of respondents (72%) were reassigned to COVID-19 care and 84.3% of residents missed part of their training rotations. Overall, 17.2% of this population reported that they had contracted COVID-19, 37.3% had scores indicating anxiety, and 30.4% moderate to severe depression. Almost a quarter of young oncologists (23.3%) had doubts about their medical vocation. Conclusions Burnout affects a considerable number of young oncologists. The COVID-19 pandemic has had a profound impact on causes of burnout, making it even more necessary to periodically monitor it to define appropriate detection and prevention strategies.This project received funding from the Spanish Society of Medical Oncology (SEOM)

    Produtos de hidratação em argamassas geopoliméricas à base de argila da Tunísia para reparação de estruturas de concreto

    Get PDF
    A reparação de estruturas degradadas de concreto representa uma oportunidade para a indústria da construção mas também um desafio para a comunidade científica. O desenvolvimento de novas argamassas de reparação constitui por isso uma importante área de investigação. Os geopolímeros são ligantes inovadores alternativos ao cimento Portland pelo que as argamassas à base destes materiais, geopolíméricas, apresentam algumas potencialidades no campo da reparação das estruturas de concreto. O presente artigo apresenta resultados de uma investigação sobre o desenvolvimento de argamassas geopoliméricas à base de uma argila da Tunísia sujeita a tratamento térmico. É incluída uma análise da argila e também dos produtos de hidratação da argamassa os quais apresentam fases geopoliméricas típicas

    Three dimensional magnetic nanowires grown by focused electron-beam induced deposition

    Get PDF
    Control of the motion of domain walls in magnetic nanowires is at the heart of various recently proposed three-dimensional (3D) memory devices. However, fabricating 3D nanostructures is extremely complicated using standard lithography techniques. Here we show that highly pure 3D magnetic nanowires with aspect-ratios of ~100 can be grown using focused electron-beam-induced-deposition. By combining micromanipulation, Kerr magnetometry and magnetic force microscopy, we determine that the magnetisation reversal of the wires occurs via the nucleation and propagation of domain walls. In addition, we demonstrate that the magnetic switching of individual 3D nanostructures can be directly probed by magneto-optical Kerr effect

    Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth

    Full text link
    We have prepared iron microwires in a combination of focused electron beam induced deposition (FEBID) and autocatalytic growth from the iron pentacarbonyl, Fe(CO)5, precursor gas under UHV conditions. The electrical transport properties of the microwires were investigated and it was found that the temperature dependence of the longitudinal resistivity (rhoxx) shows a typical metallic behaviour with a room temperature value of about 88 micro{\Omega} cm. In order to investigate the magnetotransport properties we have measured the isothermal Hall-resistivities in the range between 4.2 K and 260 K. From these measurements positive values for the ordinary and the anomalous Hall coefficients were derived. The relation between anomalous Hall resistivity (rhoAN) and longitudinal resistivity is quadratic, rhoAN rho^2 xx, revealing an intrinsic origin of the anomalous Hall effect. Finally, at low temperature in the transversal geometry a negative magnetoresistance of about 0.2 % was measured

    The one-dimensional contact process: duality and renormalisation

    Full text link
    We study the one-dimensional contact process in its quantum version using a recently proposed real space renormalisation technique for stochastic many-particle systems. Exploiting the duality and other properties of the model, we can apply the method for cells with up to 37 sites. After suitable extrapolation, we obtain exponent estimates which are comparable in accuracy with the best known in the literature.Comment: 15 page

    On the possible sources of gravitational wave bursts detectable today

    Full text link
    We discuss the possibility that galactic gravitational wave sources might give burst signals at a rate of several events per year, detectable by state-of-the-art detectors. We are stimulated by the results of the data collected by the EXPLORER and NAUTILUS bar detectors in the 2001 run, which suggest an excess of coincidences between the two detectors, when the resonant bars are orthogonal to the galactic plane. Signals due to the coalescence of galactic compact binaries fulfill the energy requirements but are problematic for lack of known candidates with the necessary merging rate. We examine the limits imposed by galactic dynamics on the mass loss of the Galaxy due to GW emission, and we use them to put constraints also on the GW radiation from exotic objects, like binaries made of primordial black holes. We discuss the possibility that the events are due to GW bursts coming repeatedly from a single or a few compact sources. We examine different possible realizations of this idea, such as accreting neutron stars, strange quark stars, and the highly magnetized neutron stars (``magnetars'') introduced to explain Soft Gamma Repeaters. Various possibilities are excluded or appear very unlikely, while others at present cannot be excluded.Comment: 24 pages, 20 figure

    When the optimal is not the best: parameter estimation in complex biological models

    Get PDF
    Background: The vast computational resources that became available during the past decade enabled the development and simulation of increasingly complex mathematical models of cancer growth. These models typically involve many free parameters whose determination is a substantial obstacle to model development. Direct measurement of biochemical parameters in vivo is often difficult and sometimes impracticable, while fitting them under data-poor conditions may result in biologically implausible values. Results: We discuss different methodological approaches to estimate parameters in complex biological models. We make use of the high computational power of the Blue Gene technology to perform an extensive study of the parameter space in a model of avascular tumor growth. We explicitly show that the landscape of the cost function used to optimize the model to the data has a very rugged surface in parameter space. This cost function has many local minima with unrealistic solutions, including the global minimum corresponding to the best fit. Conclusions: The case studied in this paper shows one example in which model parameters that optimally fit the data are not necessarily the best ones from a biological point of view. To avoid force-fitting a model to a dataset, we propose that the best model parameters should be found by choosing, among suboptimal parameters, those that match criteria other than the ones used to fit the model. We also conclude that the model, data and optimization approach form a new complex system, and point to the need of a theory that addresses this problem more generally

    High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

    Get PDF
    Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. The CAD approach supplants trial and error toward more precise/accurate FEBID required for real applications/device prototyping.J.D.F., R.W., P.D.R., A.F.P., and H.P. acknowledge that the creation of the CAD environment was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. R.W. and H.P. gratefully acknowledge the valuable support provided from Prof. Dr. Ferdinand Hofer. R.W. and H.P. also acknowledge financial support by the COST action CELINA (Nr. CM1301), EUROSTARS project TRIPLE-S (Nr. E! 8213), the bmvit exchange program, and FFG—Production of the Future project SENTINEL (Nr. 850652). L.S., D.S.H., and A.F.P. acknowledge funding from EPSRC, grant numbers EP/M008517/1 and EP/L015978/1, and from the Winton Program for the Physics of Sustainability
    • …
    corecore