900 research outputs found
Pooling stated and revealed preference data in the presence of RP endogeneity
Pooled discrete choice models combine revealed preference (RP) data and stated preference (SP) data to exploit advantages of each. SP data is often treated with suspicion because consumers may respond differently in a hypothetical survey context than they do in the marketplace. However, models built on RP data can suffer from endogeneity bias when attributes that drive consumer choices are unobserved by the modeler and correlated with observed variables. Using a synthetic data experiment, we test the performance of pooled RP–SP models in recovering the preference parameters that generated the market data under conditions that choice modelers are likely to face, including (1) when there is potential for endogeneity problems in the RP data, such as omitted variable bias, and (2) when consumer willingness to pay for attributes may differ from the survey context to the market context. We identify situations where pooling RP and SP data does and does not mitigate each data source’s respective weaknesses. We also show that the likelihood ratio test, which has been widely used to determine whether pooling is statistically justifiable, (1) can fail to identify the case where SP context preference differences and RP endogeneity bias shift the parameter estimates of both models in the same direction and magnitude and (2) is unreliable when the product attributes are fixed within a small number of choice sets, which is typical of automotive RP data. Our findings offer new insights into when pooling data sources may or may not be advisable for accurately estimating market preference parameters, including consideration of the conditions and context under which the data were generated as well as the relative balance of information between data sources.This work was supported in part by a grant from the Link Foundation, a grant from the National Science Foundation # 1064241 , and a grant from Ford Motor Company. The opinions expressed are those of the authors and not necessarily those of the sponsors.Accepted manuscrip
Improved Semiclassical Approximation for Bose-Einstein Condensates: Application to a BEC in an Optical Potential
We present semiclassical descriptions of Bose-Einstein condensates for
configurations with spatial symmetry, e.g., cylindrical symmetry, and without
any symmetry. The description of the cylindrical case is quasi-one-dimensional
(Q1D), in the sense that one only needs to solve an effective 1D nonlinear
Schrodinger equation, but the solution incorporates correct 3D aspects of the
problem. The solution in classically allowed regions is matched onto that in
classically forbidden regions by a connection formula that properly accounts
for the nonlinear mean-field interaction. Special cases for vortex solutions
are treated too. Comparisons of the Q1D solution with full 3D and Thomas-Fermi
ones are presented.Comment: 14 pages, 5 figure
Multi-filament structures in relativistic self-focusing
A simple model is derived to prove the multi-filament structure of
relativistic self-focusing with ultra-intense lasers. Exact analytical
solutions describing the transverse structure of waveguide channels with
electron cavitation, for which both the relativistic and ponderomotive
nonlinearities are taken into account, are presented.Comment: 21 pages, 12 figures, submitted to Physical Review
Decoherence and the rate of entropy production in chaotic quantum systems
We show that for an open quantum system which is classically chaotic (a
quartic double well with harmonic driving coupled to a sea of harmonic
oscillators) the rate of entropy production has, as a function of time, two
relevant regimes: For short times it is proportional to the diffusion
coefficient (fixed by the system--environment coupling strength). For longer
times (but before equilibration) there is a regime where the entropy production
rate is fixed by the Lyapunov exponent. The nature of the transition time
between both regimes is investigated.Comment: Revtex, 4 pages, 3 figures include
Optimal use of time dependent probability density data to extract potential energy surfaces
A novel algorithm was recently presented to utilize emerging time dependent
probability density data to extract molecular potential energy surfaces. This
paper builds on the previous work and seeks to enhance the capabilities of the
extraction algorithm: An improved method of removing the generally ill-posed
nature of the inverse problem is introduced via an extended Tikhonov
regularization and methods for choosing the optimal regularization parameters
are discussed. Several ways to incorporate multiple data sets are investigated,
including the means to optimally combine data from many experiments exploring
different portions of the potential. Results are presented on the stability of
the inversion procedure, including the optimal combination scheme, under the
influence of data noise. The method is applied to the simulated inversion of a
double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package;
submitted to PhysRevA; several descriptions and explanations extended in Sec.
I
Driven Morse Oscillator: Model for Multi-photon Dissociation of Nitrogen Oxide
Within a one-dimensional semi-classical model with a Morse potential the
possibility of infrared multi-photon dissociation of vibrationally excited
nitrogen oxide was studied. The dissociation thresholds of typical driving
forces and couplings were found to be similar, which indicates that the results
were robust to variations of the potential and of the definition of
dissociation rate.
PACS: 42.50.Hz, 33.80.WzComment: old paper, 8 pages 6 eps file
Del Pezzo surfaces of degree 1 and jacobians
We construct absolutely simple jacobians of non-hyperelliptic genus 4 curves,
using Del Pezzo surfaces of degree 1. This paper is a natural continuation of
author's paper math.AG/0405156.Comment: 24 page
Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium
Spatial Kerr solitons, typically associated with the standard paraxial
nonlinear Schroedinger equation, are shown to exist to all nonparaxial orders,
as exact solutions of Maxwell's equations in the presence of vectorial Kerr
effect. More precisely, we prove the existence of azimuthally polarized,
spatial, dark soliton solutions of Maxwell's equations, while exact linearly
polarized (2+1)-D solitons do not exist. Our ab initio approach predicts the
existence of dark solitons up to an upper value of the maximum field amplitude,
corresponding to a minimum soliton width of about one fourth of the wavelength.Comment: 4 pages, 4 figure
Time-dependent unitary perturbation theory for intense laser driven molecular orientation
We apply a time-dependent perturbation theory based on unitary
transformations combined with averaging techniques, on molecular orientation
dynamics by ultrashort pulses. We test the validity and the accuracy of this
approach on LiCl described within a rigid-rotor model and find that it is more
accurate than other approximations. Furthermore, it is shown that a noticeable
orientation can be achieved for experimentally standard short laser pulses of
zero time average. In this case, we determine the dynamically relevant
parameters by using the perturbative propagator, that is derived from this
scheme, and we investigate the temperature effects on the molecular orientation
dynamics.Comment: 16 pages, 6 figure
Theory of four-wave mixing of matter waves from a Bose-Einstein condensate
A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated
four-wave mixing of matter wavepackets created from a Bose-Einstein condensate.
The experiment utilized light pulses to create two high-momentum wavepackets
via Bragg diffraction from a stationary Bose-Einstein condensate. The
high-momentum components and the initial low momentum condensate interact to
form a new momentum component due to the nonlinear self-interaction of the
bosonic atoms. We develop a three-dimensional quantum mechanical description,
based on the slowly-varying-envelope approximation, for four-wave mixing in
Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation.
We apply this description to describe the experimental observations and to make
predictions. We examine the role of phase-modulation, momentum and energy
conservation (i.e., phase-matching), and particle number conservation in
four-wave mixing of matter waves, and develop simple models for understanding
our numerical results.Comment: 18 pages Revtex preprint form, 13 eps figure
- …
