A recent experiment [Deng et al., Nature 398, 218(1999)] demonstrated
four-wave mixing of matter wavepackets created from a Bose-Einstein condensate.
The experiment utilized light pulses to create two high-momentum wavepackets
via Bragg diffraction from a stationary Bose-Einstein condensate. The
high-momentum components and the initial low momentum condensate interact to
form a new momentum component due to the nonlinear self-interaction of the
bosonic atoms. We develop a three-dimensional quantum mechanical description,
based on the slowly-varying-envelope approximation, for four-wave mixing in
Bose-Einstein condensates using the time-dependent Gross-Pitaevskii equation.
We apply this description to describe the experimental observations and to make
predictions. We examine the role of phase-modulation, momentum and energy
conservation (i.e., phase-matching), and particle number conservation in
four-wave mixing of matter waves, and develop simple models for understanding
our numerical results.Comment: 18 pages Revtex preprint form, 13 eps figure