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Abstract

Pooled discrete choice models combine revealed preference (RP) data and stated preference
(SP) data to exploit advantages of each. SP data is often treated with suspicion because con-
sumers may respond differently in a hypothetical survey context than they do in the marketplace.
However, models built on RP data can suffer from endogeneity bias when attributes that drive
consumer choices are unobserved by the modeler and correlated with observed variables. Using
a synthetic data experiment, we test the performance of pooled RP-SP models in recovering the
preference parameters that generated the market data under conditions that choice modelers
are likely to face, including (1) when there is potential for endogeneity problems in the RP
data, such as omitted variable bias, and (2) when consumer willingness to pay for attributes
may differ from the survey context to the market context. We identify situations where pooling
RP and SP data does and does not mitigate each data source’s respective weaknesses. We also
show that the likelihood ratio test, which has been widely used to determine whether pooling is
statistically justifiable, (1) can fail to identify the case where SP context preference differences
and RP endogeneity bias shift the parameter estimates of both models in the same direction and
magnitude and (2) is unreliable when the product attributes are fixed within a small number of
choice sets, which is typical of automotive RP data. Our findings offer new insights into when
pooling data sources may or may not be advisable for accurately estimating market preference
parameters, including consideration of the conditions and context under which the data were
generated as well as the relative balance of information between data sources.

Keywords: endogeneity; discrete choice modeling; data enrichment; choice data combination;
pooled models; revealed preference; stated preference; stated choice.



Highlights

1. We identify cases where pooling RP and SP data can improve or worsen parameter recovery.

2. The likelihood ratio test can falsely reject pooling when RP data describes a small number
of choice sets.

3. We propose a method for computing the information balance in pooled models.

4. We offer new insights for pooling SP and RP data under potential RP endogeneity.
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1 Introduction
Discrete choice modeling is an established area of research in transportation, econometrics,
psychology, and marketing (Louviere et al., 2000; Train, 2009). The typical approach uses a
random utility framework to develop a model of the processes presumed to have generated
observed consumer choices, parameterized as a function of product attributes. The parameters
of the model are then estimated from observed consumer choices. Although previously developed
modeling techniques take many forms, the data for such models typically come from one of two
sources: “Revealed Preference” (RP) data and “Stated Preference” (SP) data. RP data records
the details of actual purchases made in the marketplace, and SP data is collected in controlled
survey experiments where respondents rate, rank, or make choices from a set of hypothetical
products controlled by the researcher (Louviere et al., 2000).

These two data sources have different strengths and weaknesses. RP data have the face va-
lidity of reflecting actual market choices, but they only provide information on existing products
and past behavior. In addition, models estimated on RP data can often suffer from econometric
problems, such as multicollinearity, which can result in poorly identified parameter estimates,
or an endogeneity problem from omitted variables (attributes observed by the consumer but not
by the modeler), which can result in biased parameter estimates if they influence choice and
are correlated with observed attributes. Further, in many RP settings, such as the automotive
market, modelers observe multiple choices from only one set of products, and, in the presence
of omitted variables, this results in correlated errors that violate the IID assumption of the
multinomial logit model, leading to inaccurate inference.

SP data can be designed to avoid these problems and can include hypothetical products
and attributes, allowing researchers to explore options not currently available in the market
(Carson and Groves, 2007; Ding et al., 2005). However, hypothetical consumer choices in a
survey context may not be consistent with purchase choices in a market context. As a result,
while model parameters estimated on SP data may reflect statistically unbiased estimates of
preferences in the survey context, they may still be inconsistent with consumers’ preferences as
realized in the marketplace.

Recognizing their complementary strengths and weaknesses, modelers have developed meth-
ods for using both data sources in model estimation (c.f. Louviere et al., 2000, Ch. 8). In this
study, we focus on the pooled RP-SP model where model parameters are informed by both
data sets.1 The pooled model assumes that preferences for attributes common to both RP and
SP data sets can be modeled with common parameters while allowing for attributes that are
only observed in one data set to be informed by that data set. Figure 1 provides a conceptual
diagram of the RP, SP, and pooled models.
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Attributes
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Attributes
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Attributes
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Attributes
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Attributes
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Figure 1: Conceptual diagram for RP, SP, and pooled models. Boxes indicate data,
elipses indicate model parameters, and arrows indicate which data inform which param-
eter estimates. “Common Attributes” are those observed in both RP and SP contexts.

1While the sequential model provides another approach for using RP and SP data, attribute coefficients are only
informed by the SP data while the RP data is used to calibrate predictions to actual market shares (Swait et al.,
1994).
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The pooled RP-SP model has been used in numerous studies to overcome some of the lim-
itations of RP data, such as adding information on attributes or alternatives that do not exist
in RP data and improving statistical properties by adding variation from SP data to attributes
that are collinear in RP data. For instance, SP data might include new automotive technologies
that do not currently exist or combine attributes in ways not currently seen in the marketplace
(e.g. an inexpensive electric car with a 500 mile driving range). Pooled models have also been
shown to achieve better predictive performance than RP-only or SP-only models in some ap-
plications (Brownstone et al., 2000; Feit et al., 2010; Hensher and Bradley, 1993; Swait et al.,
1994; Swait and Andrews, 2003).

Each data source has potential issues that may be difficult to measure in practice, and the
effect these issues have on pooled models has not been fully characterized in the prior literature.
In this study, we focus on the effect of RP endogeneity from omitted variables on pooled RP-SP
models. Although endogeneity in RP data has been studied extensively (Berry et al., 1995;
Villas-Boas and Winer, 1999; Guevara, 2015), methods to correct endogeneity bias are often
inefficient (Rossi, 2014; Haaf et al., 2016). Prior papers on RP-SP pooling have largely ignored
the potential for omitted variable bias in the RP data. Using a synthetic data experiment, we
show that pooling RP and SP data in the presence of RP endogeneity can lead to pooled model
parameter estimates that are far from the true RP parameters and can render the frequently-
used likelihood ratio test inappropriate for assessing whether the pooling assumption is justified.

We also illustrate how other characteristics of RP data, such as having multiple choice obser-
vations from the same choice set, can result in low informativeness about estimated parameters.
SP data, by contrast, is often highly-informative; as a result, pooling RP and SP data can lead
to parameter estimates (and substantive conclusions) that are primarily driven by the SP data.
While this is not a problem if the SP choice process is the same as the RP choice process, it does
call into question the value of pooling versus simply using the SP estimates. Little guidance is
available in the literature on gauging the contribution of each data source to the pooled esti-
mate. To remedy this, we introduce a new metric that researchers can use to assess the balance
of information between RP and SP data.

In the next section, we provide some necessary background information on the pooled RP-SP
model, including a precise description of the model and a summary of the literature. Section
3 describes the setup of the simulation study, and Section 4 reports the findings. In Section 5
we examine different sensitivity cases of the main results. We then discuss several important
considerations for pooled models in Section 6, including a proposed metric for the information
balance between RP and SP data, the potential to use endogeneity corrections in pooled models,
and some limitations of our analysis. Finally, Section 7 concludes with a summary of our findings
for understanding under what conditions pooling data sources may or may not be advisable for
accurately estimating market preference parameters.

2 Background

2.1 The Random Utility Model
The pooled RP-SP model is based on the random utility model—a well-established probability
model that can be estimated from observed consumer choices (Louviere et al., 2000; Train,
2009). Random utility models assume that consumers faced with a choice among a set of
alternatives choose the alternative j that has the greatest utility uj . The utility is modeled
as uj = vj + εj , where vj is a function of the vector of observed attributes of the product—
vj = f(xj) representing the portion of utility explained by the attributes—and εj is a random
variable representing the portion of utility unobservable to the modeler. Utility uj is thus a
random variable, and identification of the alternative with the highest utility is probabilistically
assessed. In addition, utility only has relative, rather than absolute, value.

Consider the following utility model:
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u∗j = β∗
′
xj − α∗pj + ε∗j , ε∗j ∼ Gumbel

(
0, σ2π

2

6

)
(1)

where α∗ is the coefficient for price pj , β∗ is the vector of coefficients for non-price attributes xj ,
and the error term, ε∗j , is an IID random variable with a Gumbel extreme value distribution of
mean zero and variance σ2(π2/6).2 There exists an infinite set of combinations of values for α∗,
β∗ and σ that produce the same choice probabilities, and a model with all of these parameters
is not identifiable. To specify an identifiable model, there are two commonly used normalization
approaches. The first approach, referred to as the “preference space” model (Train and Weeks,
2005), normalizes the scale of the error term by dividing equation (1) by σ:(

u∗j
σ

)
=

(
β∗

σ

)′
xj −

(
α∗

σ

)
pj +

(
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σ

)
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Renaming the scaled utility parameters as β = (β∗/σ) and α = (α∗/σ), the standardized
error term as εj = (ε∗j/σ), and the scaled utility as uj = (u∗j/σ), equation (2) can be written as
the usual parameterization of the multinomial logit model (MNL) in the preference space:

uj = β′xj − αpj + εj εj ∼ Gumbel
(
0,
π2

6

)
(3)

where β and α are the model parameters. The vector β represents the utility obtained from
changes in each non-price attribute (relative to the standardized scale of the error term), and
α represents utility obtained from price reductions (relative to the standardized scale of the
error term). Since the error in equation (3) follows the standard extreme value distribution,
the probability that a consumer will choose option j from the choice set Jc follows the familiar
multinomial logit form (cf. Train, 2009):

Pjc =
exp

(
β′xj − αpj

)∑
k∈Jc

exp
(
β′xk − αpk

) , ∀c ∈ {1, 2, 3, . . . C} , j ∈ Jc, (4)

where c indexes a set of C choice sets. Model coefficients in equation (3) are measured in units
of utility per unit attribute, which is only meaningful relative to other terms in the model and
cannot be directly interpreted independently of the rest of the model or directly compared to
other models.

The alternative normalization approach, referred to as the “willingness-to-pay (WTP) space”
(Train and Weeks, 2005), is to normalize equation (1) by α∗ instead of σ:(

u∗j
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(5)

The error term ε∗j in equation (5) is scaled by λ2 = σ2/(α∗)2, and we can rewrite equation
(5) multiplying both sides by λ = (α∗/σ) and renaming uj = (λu∗j/α

∗), β = (β∗/α∗), and
εj = (λε∗j/α

∗), resulting in the parameterization of the multinomial logit model in the WTP
space:

uj = λ
(
β′xj − pj

)
+ εj εj ∼ Gumbel

(
0,
π2

6

)
(6)

2Models that allow β∗ to vary across consumers facilitate more flexible substitution patterns and can sometimes
lead to better model fit (Brownstone and Train, 1999; McFadden and Train, 2000), but the key points in our analysis
do not depend on heterogeneity, so we do not introduce it here.
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where λ and β are the model parameters. β represents the importance of each non-price
attribute relative to price (i.e. the WTP)3, and λ represents the scale of the deterministic
portion of utility relative to the standardized scale of the random error term (i.e. a “signal to
noise ratio”). The probability that a consumer will choose option j from the choice set Jc again
follows the familiar multinomial logit form but in the WTP space:

Pjc =
exp

[
λ
(
β′xj − pj

)]∑
k∈Jc

exp
[
λ
(
β′xk − pk

)] , ∀c ∈ {1, 2, 3, . . . C} , j ∈ Jc, (7)

The WTP-space parameterization was originally proposed in the context of heterogeneous
models, where specifying a normal distribution for the preference space parameters is not equiv-
alent to specifying a normal distribution for WTP-space parameters (Train and Weeks, 2005;
Sonnier et al., 2007). In the homogeneous models we study here, the two parameterizations
are equivalent, but the WTP-space has the advantage that the coefficients in β can be directly
compared across different models irrespective of scale differences and are measured in a directly
interpretable unit (currency). This is particularly convenient for pooling RP and SP data when
the goal is to compare the value of attributes (which should be measured relative to currency)
across SP, RP and pooled models. For these reasons, we adopt the WTP-space parameterization
for the remainder of the main text, and we offer in supplemental information a comparison of
our main results in the preference space.

2.2 The Pooled Model in the WTP Space
Our description of the pooled utility model is based on the description in Chapter 8 of Louviere
et al. (2000) but transformed into the WTP space. We begin by specifying the data-generating
utility for products in the SP data set, which follows the form of equation (6):

uSj = λS
(
βS′

xj + γS′
yS
j − pj

)
+ εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(8)

where S denotes SP and we separate out the attributes into two vectors: xj represents attributes
that are common between the RP and SP data sets, and yS

j represents those attributes observed
in the SP data but not in the RP data. The coefficients for these attribute vectors are βS and
γS, respectively.

Similarly, we define the data-generating utility function for the RP data as:

uRj = λR
(
βR′

xj + γR′
yR
j + ζ′zj − pj

)
+ εRj , εRj ∼ Gumbel

(
0,
π2

6

)
(9)

where R denotes RP and we again separate the attributes into two vectors: xj are the common
attributes, and yR

j are the attributes observed in the RP data but not the SP data. We also
include a vector of attributes zj that affect consumer choice in the RP context but are unobserved
by the modeler and have coefficients ζ. We do not include a z term in equation (8) because all
attributes observed by the respondent in the controlled SP setting are, by design, also observed
by the modeler.

Since the ζ′zj term in equation (9) represents attributes unobserved by the modeler, they
are omitted in model specifications used for estimation and are absorbed in the error term. For
example, in the automobile context a vehicle’s styling is known to be important to consumer
choice in the RP setting, but because styling is difficult to codify it is typically omitted from es-
timated models. In the next subsection, we discuss the conditions under which this is reasonable
and when it could create an endogeneity problem.

3Although prevalent in the literature, the term “willingness-to-pay” is potentially misleading, as it suggests a sharp
threshold above which all customers will not buy even though purchase probability varies continuously with price in
the MNL model. A better name might be “equivalence price,” i.e. the prices at which an alternative with a particular
feature has equal utility as one without the feature.
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To estimate an SP-only model, the modeler assumes the model specification

uSj = λ̂S
(
β̂

S′

xj + γ̂
S′
yS
j − pj

)
+ εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(10)

and estimates the parameters β̂
S
, γ̂S and λ̂S using the SP data. The hats indicate that the

parameters are estimated rather than the true data-generating parameters in equation (8). To
estimate an RP-only model, the modeler assumes the model specification

uSj = λ̂R
(
β̂

R′

xj + γ̂
R′
yR
j − pj

)
+ εRj , εRj ∼ Gumbel

(
0,
π2

6

)
(11)

and estimates the parameters β̂
R
, γ̂R and λ̂R using the RP data. Note that the ζ′zj term in

equation (9) is omitted from the RP utility specification used in estimation as it is unobserved
by the modeler, so the model in equation (11) is intentionally misspecified in a way that mimics
a potential misspecification faced in practical settings. If any of the elements in zj are correlated
with any of the elements in x or yR, then the resulting parameter estimates may be biased unless
the modeler controls for the endogeneity from the omitted variables.

In a pooled model, it is assumed that βR = βS = β for common attributes, and the pooled
utility specification is given by

uSj = λ̂S
(
β̂
′
xj + γ̂

S′
yS
j − pj

)
+ εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(12)

uRj = λ̂R
(
β̂
′
xj + γ̂

R′
yR
j − pj

)
+ εRj εRj ∼ Gumbel

(
0,
π2

6

)
(13)

where β̂ is modeled as a vector of parameters common to the two utility models. Differences
between the two data sets in the relative scale of the error term are accommodated through the
estimated scale terms λ̂R and λ̂S.

The key assumption in the pooled model is that β̂ is the same across RP and SP contexts;
if this assumption is false for any of the attributes, then β̂ will not be an unbiased estimate of
the true effect of the attribute in the RP context, βR, which could lead to erroneous conclusions
about how consumers will react to changes in attributes and prices in the market.

To examine if pooling is justifiable, the prior literature has used visual tests, such as plotting
RP model coefficients versus SP model coefficient estimates for common attributes, and statis-
tical tests, such as the likelihood ratio (LR) test for pooling (Swait and Louviere, 1993). The
LR test checks whether there is enough evidence in the data to reject the hypothesis that the
two data sources were generated from models with the same parameters (βR = βS). The test
statistic is computed as −2[(LR+LS)−LP], where LR and LS are the log-likelihood values from
the separately estimated RP and SP models, respectively, and LP is the log-likelihood of the
pooled model. If pooling is rejected for some but not all attributes, then it is recommended that
those parameters be moved into yR and yS so that separate parameters for those attributes may
be estimated while still pooling the remaining parameters (Louviere et al., 2000). The LR test
has been widely used to justify pooling assumptions in much of the RP-SP pooling literature
(Adamowicz et al., 1994, 1997; Ben-Akiva and Morikawa, 1990; Bhat and Castelar, 2002; Birol
et al., 2006; Brownstone et al., 2000; Hensher and Bradley, 1993; Hensher et al., 1999; Mark
and Swait, 2004).

2.3 Advantages and Disadvantages of RP and SP Data
RP and SP data each have different strengths and weaknesses, but the literature suggests neither
is a “gold standard.” RP data reflect real purchases where money is exchanged for goods and/or
services. As a result, estimated model parameters using RP data are generally believed to
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reflect consumers’ preferences in the real-world market context. However, a number of common
issues with RP data can result in biased parameter estimates. In particular, the problem of
endogeneity, which occurs when an observed variable is correlated with the error term, leads to
biased estimates.4

When the number and nature of attributes in a choice situation is sufficiently large and
complex (for instance, automobile choice or housing choice), any discrete choice model will omit
some unobserved information about attributes that influence choice; that is, there are important
variables z that affect choice in equation (9), and these variables are not observed by the
modeler and are omitted in model estimation. This misspecification will lead to biased parameter
estimates if any of the observed attributes are correlated with the unobserved attributes and
proper measures are not taken to account for the endogeneity (Wooldridge, 2010; Train, 2009).
A particularly common concern in the literature on RP models is price endogeneity, which occurs
if an unobserved attribute that influences choice (e.g. the “style” of a vehicle) also influences
the price that manufacturers set (Berry et al., 1995). A number of past studies have developed
methods to correct endogeneity bias in choice models (see Guevara, 2015, for a review). It has
also been argued that many of these “fixes” can generate more problems than they solve (Rossi,
2014; Haaf et al., 2016).

Other concerns with RP data include measurement error (particularly in measuring the
attributes and prices faced by decision makers in the market), low attribute variation, and
multicollinearity (e.g. price and size are often positively correlated in the automobile market).
Modelers also may not observe the consideration sets consumers face, and the very nature of
RP data excludes information about products or attributes that do not yet exist in the market.
Further, an important feature of RP data is that it often includes multiple choices from the same
set of fixed alternatives with common unobserved attributes. As we will show, this produces
correlations among these choices that violate the IID assumption of the multinomial logit model,
resulting in inconsistent maximum likelihood estimators and inaccurate standard errors. For
example, automobile choice models are often estimated using RP data from a small number of
model years where unobserved features of the products in the market are fixed for all consumers.
Thus, while RP data has the face validity of reflecting real market choices, the modeler will be
limited in the set of parameters she can estimate and must consider whether to attempt to
correct for a potential endogeneity (if possible). Determining whether or not estimated model
parameters are unbiased is often a judgment call based on the modeler’s understanding of how
the data were generated and the availability of data.

In contrast, SP data is collected in controlled survey experiments, allowing the researcher
to avoid many of the concerns that arise in RP data by controlling the observable attributes,
designing the survey to avoid attribute correlations, and avoiding the presence of unobserved
attributes that influence consumer choice. In addition, SP data can provide information about
products or attributes that are not yet available in the market. However, it is well-known that
the context of a choice situation can alter choice behavior. Carson and Groves (2007) illustrate
that different incentives provided by particular response formats on surveys can induce “strategic
behavior” in respondents, and unless the collected information is “incentive compatible” with
the real-world incentives, respondents may fail to to reveal their true preferences. Ding et al.
(2005) show a similar result in which models estimated from “incentive-aligned” choices (where
respondents were required to actually purchase one of their chosen product profiles) made pre-
dictions that were more consistent with observed market choices. Additionally, the salience of
each attribute in a survey, where attributes are often listed together in a side-by-side compar-
ison, may differ from the salience of those same attributes in a market context (Hardt et al.,
2017; Hensher, 2010).

Since the survey context of SP data is different from the real-world market context of RP
data, WTP parameters from the SP context may differ from the corresponding WTP parameters
in the RP context (Beck et al., 2016). We will refer to this as a “context difference” between the

4Endogeneity is typically irrelevant in SP data since SP surveys are controlled experiments where the researcher
observes all attributes influencing choice.
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SP and RP data. The term “hypothetical bias” has also been used to describe the SP parameters
that do not align with RP parameters (e.g. Hensher, 2010), but to avoid confusion we reserve
the term “bias” to refer to statistical bias.5

The literature is unclear about the likelihood that respondents will overreact versus under-
react to product features in the survey context relative to the market context. For example, one
might guess that respondents tend to be less sensitive to price in hypothetical tasks where they
do not spend real money, but they also may overreact in some cases by, for example, paying
more attention to price in the survey context than they do in the market context. Thus, while
there are arguably fewer econometric challenges to recovering parameters that reflect survey
behavior, the modeler typically remains uncertain about the degree to which those parameters
are comparable to the corresponding parameters in the market context.

In short, RP and SP data often have opposing uncertainties: in the RP (SP) context,
modelers are often more (less) certain that the observed choices reflect true market preferences
but less (more) certain whether parameters estimated from those data are statistically biased.
Whether or not any of these issues are cause for concern in any specific application depends on
how the data were generated and collected. In the absence of definitive empirical evidence, the
degree of concern about the potential presence of these issues is typically determined subjectively
by the modeler. Table 1 provides a summary of the different advantages and disadvantages of
RP and SP data.

Table 1: Advantages and Disadvantages of Stated and Revealed Preference Data

Stated Preference (SP) Revealed Preference (RP)

Advantages • Include information on prod-
ucts and attributes not yet in
market

• Controlled experiment

• Reflects choices from real market

Disadvantages • Potential difference in survey
vs. market choice behavior

• Potential for omitted variable bias

• Low attribute variation

• Measurement error

• Multicollinearity among explanatory
variables

• Missing information about consider-
ation sets and product availability

• No information on products and at-
tributes that do not yet appear in the
marketplace

• Correlated errors among within-
market choices

2.4 Literature on Pooled RP-SP Models
The pooled RP-SP model was originally proposed by Morikawa (1989) and has since been used in
numerous studies to overcome some of the limitations of RP data, such as including information

5While past literature has used the term “hypothetical bias” to broadly describe any discrepancies between pref-
erences revealed by actual market behavior and those from hypothetical experiments (Beck et al., 2016), there is still
no widely accepted behavioral theory that explains the phenomenon (Loomis, 2011).
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on attributes or alternatives that do not exist in RP data (Axsen et al., 2009; Ben-Akiva and
Morikawa, 1990; Birol et al., 2006; Brownstone et al., 2000; Dissanayake and Morikawa, 2003;
Hensher and Bradley, 1993; Polydoropoulou and Ben-Akiva, 2001; Swait and Andrews, 2003)
and improving statistical properties of the data by adding variation to highly collinear attributes
in RP data (Adamowicz et al., 1994, 1997; Ben-Akiva et al., 1994; Brownstone et al., 2000; Feit
et al., 2010; Hensher et al., 1999; Mark and Swait, 2004). Other studies also suggest that RP
data can help “ground” SP data in reality since the survey context of SP data may not reflect
reality (Axsen et al., 2009; Ben-Akiva and Morikawa, 1990; Bhat and Castelar, 2002; Birol et al.,
2006; Brownstone et al., 2000; Brownstone and Small, 2005; Dissanayake and Morikawa, 2003;
Feit et al., 2010; Hensher et al., 1999; Huang et al., 1997; Mark and Swait, 2008; Polydoropoulou
and Ben-Akiva, 2001; Swait et al., 1994). Finally, several studies have found that pooled models
have achieved better predictive performance over separately-estimated RP or SP models on
within-sample or hold-out tests across multiple domains (Adamowicz et al., 1997; Axsen et al.,
2009; Börjesson, 2008; Brownstone et al., 2000; Feit et al., 2010; Hensher and Bradley, 1993;
Mark and Swait, 2004; Swait et al., 1994; Swait and Andrews, 2003). Table 5 in the supplemental
information provides a full summary of the different motivations for pooling in the 29 studies
we reviewed.

Despite the breadth of the pooling literature, nearly all of the pooled RP-SP studies have
implicitly assumed away endogeneity in the RP data and do not attempt to assess endogeneity
bias. This is perhaps an understandable accident of history, since pooled models were intro-
duced prior to the emphasis on endogeneity in the RP literature and the two literatures have
developed somewhat independently of one another. However, given the prevalence of concern
for endogeneity in non-pooling studies that use RP data, its omission in the pooled RP-SP
literature today is surprising. In our review of 29 pooled RP-SP studies, only one study (von
Haefen and Phaneuf, 2008) considers the presence of endogeneity in the RP data, but results
were inconclusive due to limitations in the data used in that study (i.e. pooling was rejected).

In this study, we use a synthetic data experiment to explore the outcomes of pooled models
under different conditions of endogeneity in the RP data and differences in attribute preferences
between the RP and SP contexts. Our analysis focuses on the pooled WTP estimate β̂ relative
to the true value of βR in the RP data. Any difference between those two is a direct consequence
of endogeneity and / or context differences.

3 Synthetic Data Study
The goal of our synthetic data study is to characterize how (1) endogeneity in the RP data and
(2) differences between consumer choice behavior in the SP versus RP context can affect the
ability of pooled models to recover the true data-generating parameters of the market context.
We first generate multiple sets of RP and SP data under different conditions of endogeneity and
context differences using known parameters and then estimate a series of RP, SP, and pooled
RP-SP models using those data. We then compare the resulting parameter estimates to the true
RP market parameters. While features of the synthetic data generating process are inspired by
typical RP and SP data for consumer automobile choices, we parameterized the data generating
process in a way that allows us to explore data that would be representative of other products,
such as consumer package goods, in Section 5.

3.1 Simulating the Data
We generate data based on a simplified example of the data-generating functions (the “true”
utility models) in equations (8) and (9), where utility depends on price p, a single non-price
attribute x that is common to each data source, and a single RP attribute z unobserved by the
modeler that is used to control the level of price endogeneity in the RP data, depending on it’s
correlation with price. While this is a simple case, it provides a clean illustration of key issues
for pooling in the presence of endogeneity in the RP data and context differences between the
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RP and SP data. We explore more complex data sets with more than one pooled parameter later.

SP Data Generation. We simulate the SP data to approximate a typical choice-based conjoint
survey. The true SP data-generating model is given by

uSj = λS
(
βSxj − pj

)
+ εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(14)

where each parameter is a scalar. Each of CS choice sets (each representing a choice-based con-
joint question) is generated by randomly choosing AS alternatives from the full factorial design
using 5 levels (-2, -1, 0, 1, 2) for each attribute. As would be typical, each randomized choice
question is prohibited from containing any two identical alternatives. Choices are simulated by
taking draws from the multinomial distribution defined by the choice probabilities P S

jc:

P S
jc =

exp
[
λS
(
βSxj − pj

)]∑
k∈J S

c

exp [λS (βSxk − pk)]
, ∀c ∈

{
1, 2, 3, . . . CS

}
, ∀j ∈ J S

c , (15)

where CS is the total number of SP choice sets. The total number of choice observations is
NS = nSCS where nS is the number of choice observations per SP choice set. For the SP
data, we take just one choice observation draw from each choice set (nS = 1) to represent a
randomized conjoint survey design.6

To introduce context differences between the SP data and the RP data, we compute βS by
adjusting βR by a fixed scalar δ:

βS = δβR, (16)

where βR is the RP WTP parameter in equation (17) below. Parameterizing the context differ-
ence as a function of δ allows us to explore cases where the SP WTP for changes in attribute
x is understated (δ < 1), overstated (δ > 1), or consistent with the market context (δ = 1).7
In addition to differences in WTP induced by δ, respondents could have different sensitivities
to price between the survey and market contexts, which would affect all WTP parameters. For
example, if a respondent values money less in the survey setting, then the SP WTP parameters
for all the non-price attributes will be lower than the corresponding RP WTP parameters.

RP Data Generation. We simulate the RP data to approximate typical automotive market data
(c.f. Axsen et al., 2009; Feit et al., 2010; Haaf et al., 2016). The true RP data-generating model
is given by

uRj = λR
(
βRxj + ζzj − pj

)
+ εRj , εRj ∼ Gumbel

(
0,
π2

6

)
, (17)

where each parameter is a scalar. Each of CR choice sets (each representing a particular fixed set
of alternatives for which multiple choices are observed, i.e., a “market”) is generated by randomly
drawing AR vectors of attributes [p, x, z]

′ from a multivariate normal distribution with mean
µ = [0, 0, 0]′ and variance-covariance matrix given by

ΣR =

 1 ρpx ρpz
ρpx 1 ρxz
ρpz ρxz 1

 (18)

6Note that pencil-and-paper conjoint studies often collect multiple observations from the same choice set (i.e.
ns > 1), however randomizing the choice questions for each user is more common in today’s online conjoint studies.

7Since we are focused on potential bias in the estimates of the WTP parameters, we do not introduce other context-
specific differences that could also exist, such as scale differences, which we consider in our sensitivity analysis in
Section 5.
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where the relative correlations between attributes are given by the ρ terms. The correlation
between p and z allows us to induce an endogeneity by choosing ρpz 6= 0 such that price
becomes endogenous when z is omitted from the estimated model. Within this framework we
can also explore cases where there is collinearity by setting ρpx 6= 0. In our simulation studies, we
examine cases with and without price endogeneity, and we also run sensitivity cases of different
collinearity levels (see Table 2).

Choices are simulated by taking draws from the multinomial distribution defined by the
choice probabilities PR

jc:

PR
jc =

exp
[
λR
(
βRxj + ζzj − pj

)]∑
k∈JR

c

exp [λR (βRxk + ζzk − pk)]
, ∀c ∈

{
1, 2, 3, . . . CR

}
, ∀j ∈ J R

c , (19)

Note that the ζzj term in the utility model is included when the data is simulated. (The term
is only omitted later when estimating RP and pooled models). In the RP data, we allow for
multiple choice observation draws from each choice set (nR > 1) to represent multiple consumer
purchases among the same set of alternatives. CR is the total number of RP choice sets, and
there are a total of NR = nRCR choice observations. Note that the unobserved zj as well as
the observed attributes xj and pj are fixed across multiple draws for each choice set.

We consider cases where nR > 1 because RP data often involves multiple choice observations
from the same choice set. For example, in a given month, the set of vehicles available to US
consumers is generally fixed, and thousands of customers are observed choosing from the same set
of alternatives. Similarly, in package goods categories most large retailers provide the same set
of options at the same prices across large geographic markets. This limits attribute variation in
the data and will typically reduce the information about the parameters per choice observation,
ceteris paribus. It also means that unobservables z are common across all observations from
within the same choice set (as would be the case in most real markets), and when z is absorbed
into the error term, the errors become non-IID and the multinomial logit model is misspecified.

3.2 Simulation Parameters
The goal of our simulation study is to understand how characteristics of the data affect estimates
of WTP in the pooled model. We explore several features of the data including the size of the
data, the presence of endogeneity in the RP data, the presence of context differences between
the SP and RP data, and the number of choice sets in the RP data.

The values for all simulation parameters are summarized in Table 2. For our base case,
we generate RP and SP data sets that are less typical of real data sets but have desirable
properties for isolating the effects of RP endogeneity (controlled by ρpz) and context differences
(controlled by δ) on pooled estimates of WTP. We examine the effects of more typical, less ideal
conditions in a sensitivity analysis in Section 5. In our base case, we chose parameters that
result in data sets that have an approximately equal contribution between the RP and SP data
to the pooled parameter estimates. We achieve this by comparing the elements of the expected
Fisher information matrix of each data set computed at the pooled estimates. The balance of
information between the data sets is influenced by the number of observations, attributes, and
alternatives in each data set as well as the level of attribute variation in the RP data, which
increases with more choice sets (Huber and Zwerina, 1996).8

In our base case, we set the number of RP choice sets equal to the number of RP observations
(CR = NR) so that only one choice is observed for each set of alternatives (nR = 1). This
optimistic case ensures that the RP data have sufficient variation in the observed attributes and
prevents correlations in the RP error term, allowing us to focus on the effects of ρpz and δ under
ideal conditions. In Section 5, we extend these results by examining cases where more choices
are observed for each choice set (nR > 1 and CR < NR) up to the opposite extreme where all

8Section 6.1 as well as Section 8.4 in the supplemental information provide further details on relationships between
data set characteristics and the Fisher information.
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choice observations are from one choice set (nR = NR and CR = 1). We also consider a case
where a vector of common attributes xj is pooled in place of the single common attribute xj
used in the base case. Finally, we conduct an extensive parametric study examining the effects
of wide ranges of values for each parameter in our synthetic data study (see Table 6 in the
supplemental information).

Table 2: Parameters used to generate synthetic RP and SP data.

Parameter
Base Sensitivity

Description
Case Range

λR 1 [0.1, 5] Scale of RP error term
λS 1 [0.1, 5] Scale of SP error term
βR 1 [0.5, 2] WTP coefficient for attribute x in RP context
βS δβR * WTP coefficient for attribute x in SP context
δ 1 [0.5, 2] Ratio of WTP for attribute x in the SP relative to RP context
ζ 1 [-1, 1.5] WTP coefficient for unobserved attribute z in RP context
ρpx 0 [0, 0.5] Correlation between price and x in RP context

NR 1,000 [500, 5,000] Total number of RP choice observations per simulation
NS 1,500 [500, 5,000] Total number of SP choice observations per simulation
CR NR [1, NR] Number of RP choice sets per simulation
CS NS – Number of SP choice sets per simulation
nR NR/CR * Number of RP choice observations per choice set
nS 1 – Number of SP choice observations per choice set
AR 15 [3, 100] Number of alternatives per RP market
AS 3 [2, 10] Number of alternatives per SP choice question

* Sensitivity range determined by other parameters

3.3 Test Cases
To test the effect of RP endogeneity (controlled by ρpz) and SP context differences (controlled
by δ) on the ability of the pooled model to recover the true WTP parameter for x in the market
context, βR, we generate sets of RP and SP data using 6 different cases for ρpz and δ, shown
in Table 3. If ρpz = 0 and δ = 1 (case 2), then the pooled model assumption that βR = βS is
valid, and unbiased estimates of the true parameters can be recovered by estimating a pooled
model. However, any deviation from these conditions implies that the pooling restriction is a
misspecification and could result in estimates of β̂ that differ from the true parameter βR. By
estimating the pooled model with the synthetic data, we can explore how well the pooled model
recovers the true RP parameter under conditions of misspecification that frequently occur in
practice.



Helveston et al. Pooling SP and RP Data in the Presence of RP Endogeneity 12

Table 3: Test cases for generating synthetic RP and SP data

Case ρpz δ
Interpretation

RP Data SP Data

1: “SP WTP Understated” 0 0.5 No price endogeneity WTP for x understated
2: “Ideal” 0 1 No price endogeneity No context differences
3: “SP WTP Overstated” 0 2 No price endogeneity WTP for x overstated
4: “Two Wrongs Make a Right” 0.5 0.5 Price endogenous WTP for x understated
5: “RP Price Endogenous” 0.5 1 Price endogenous No context differences
6: “Wrong In The Same Way” 0.5 2 Price endogenous WTP for x overstated

3.4 Model Estimation
We generate choice sets and choice observations for the pair of RP and SP data-generating
functions described in Section 3.1 using the parameters in Section 3.2. For each pair of simulated
RP and SP data, we estimate the parameters β̂, λ̂S, and λ̂R in the pooled RP-SP model:

uSj = λ̂S
(
β̂xj − pj

)
+ εSj (20)

uRj = λ̂R
(
β̂xj − pj

)
+ εRj (21)

where β̂ is common between the two models and the hats on the parameters indicate that they
are estimated. Note that the attribute z from the true data-generating process in equation (17)
is omitted from the RP utility specification in equation (21) used for estimation because z is
unobserved by the modeler; as a result, price will be endogenous in the RP data when ρpz 6= 0,
and both the RP-only and pooled models will have biased coefficient estimates.

Assuming the error terms are distributed IID Gumbel, then the choice probabilities for each
data source are given by the multinomial logit fraction such that 9

P̂ S
jc =

exp
[
λ̂S
(
β̂xj − pj

)]
∑
k∈J S

c

exp
[
λ̂S
(
β̂xk − pk

)] , ∀j ∈ J S
c (22)

P̂R
jc =

exp
[
λ̂R
(
β̂xj − pj

)]
∑

k∈JR
c

exp
[
λ̂R
(
β̂xk − pk

)] , ∀j ∈ J R
c (23)

The parameters in equations (21) and (20) are estimated by maximizing the pooled log-likelihood:

L =

CS∑
c=1

∑
i∈NS

c

∑
j∈J S

c

yijc ln P̂
S
jc +

CR∑
c=1

∑
i∈NR

c

∑
j∈JR

c

yijc ln P̂
R
jc (24)

where yijc = 1 if alternative j is chosen from choice set c in choice observation i and yijc = 0
otherwise; N S

c and NR
c are the sets of choice observations for each choice set J S

c and J R
c ,

9This model is intentionally misspecified relative to the data generating processes specified by equations (14) and
(17). Due to the omitted variable zj , the effective error term in the RP data generating process is not Gumbel;
rather, it is the sum of a Gumbel random variable and a normal random variable. More importantly, if we observe
multiple RP choices from among the same set of alternatives (with the same omitted zj), then the error term is no
longer IID. We explore the implications of this misspecification in our sensitivity analysis in Section 5.
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respectively; and the probabilities P̂ S
jc and P̂R

jc in equation (24) are defined in equations (22)
and (23). In our base case, |N S

c | = |NR
c | = 1.

Since the WTP utility function is nonlinear in parameters and the log likelihood function is
nonconcave, we use a randomized multi-start algorithm to search for a global solution. In each
of 10 iterations, we maximize the log-likelihood using a different set of random starting points
drawn from a uniform distribution between -1 and 1 and store the result, and we report the
solution with the greatest log-likelihood. For our base case simulation experiment, the algorithm
converged to the same solution in all 10 multi-start iterations for 91% of the simulations, and
the maximum difference in the log-likelihood across all 10 multi-start iterations was less than
0.001 for 99% of the simulations.

4 Results
We simulate 1,000 sets of RP and SP data for each of the six test cases in Table 3 and then use
them to estimate RP, SP, and pooled models. Figure 2 shows the ratio between the estimated
and true model WTP coefficients for each test case using the base case parameters in Table
2. The plots show the distribution of the ratio across all 1,000 simulations using a logarithmic
y-axis for comparing ratios. Likelihood ratio tests were computed at the 10% significance level.
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Figure 2: SP, RP, and pooled model results of the ratio of β̂ to βR for each test case in
Table 3. Each plot represents results from 1,000 simulated data sets using the base case
parameters in Table 2. The sampling variation is visualized as a kernel density plot.
For each data set, the LR test of pooling is conducted at 10% significance.
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In cases 1-3, price is not endogenous in the RP data, and the difference in the estimated SP
WTP for x varies from underestimating βR in case 1 when δ = 0.5 to overestimating βR in case
3 when δ = 2. As a result, the pooled estimate of β̂ is biased away from βR in cases 1 and 3 but
unbiased in case 2. Cases 1 and 3 illustrate the well-known problem that can arise if RP and
SP data are pooled when there are substantial context differences. As expected, the LR test
successfully detects these differences and rejects pooling. When pooling is appropriate (Case 2),
the LR test rejects pooling at close to the nominal rejection rate of 10%.

In cases 4-6, price is endogenous in the RP data, which has different implications depending
on the value of δ. In case 4 the upward bias on β̂ created by the price endogeneity in the RP
data is partially balanced by the context difference in the opposite direction for the SP data,
and the pooled estimate of β̂ is actually less biased than either the RP or SP estimates (hence
the name “Two Wrongs Make a Right”). In case 5, the SP WTP matches that of the RP context,
but the RP-only estimate of the WTP parameter is biased due to endogeneity. Pooling the RP
data with SP data that do not suffer from context differences helps mitigate the endogeneity
bias. As expected, the LR test rejects pooling in every simulation in these two cases since the
SP and RP parameter estimates are significantly different from one another, even though in
both cases the pooled model helps mitigate the RP endogeneity bias.

In case 6, the price endogeneity in the RP data and context difference in the SP data where
δ = 2 have similar effects on β̂ such that the bias is roughly the same magnitude and direction;
as a result, the pooled estimate of β̂ is approximately the same as those in the RP and SP
models (hence the name “Wrong in the Same Way”). In this case, the LR test accepts pooling
at close to the nominal confidence of 10% since the RP and SP parameters are nearly the same,
but the pooled model does not mitigate the biases.

The values of ρpz and δ in our base case simulations also affect the scale parameters λ̂R and
λ̂S (see Figure 8 in the supplemental information). Depending on the case, the modeler could
make false conclusions about both consumer WTP for attributes (β̂) as well as how consistent
consumer choices appear (the “signal-to-noise ratio”) in the RP and SP contexts (λ̂R and λ̂S).

5 Sensitivity Analysis
The parameters chosen for our base case in Table 2 were chosen to isolate the effects of en-
dogeneity and context differences on parameter recovery. However, some characteristics of the
data are idealized and not typical in real data sets (e.g. 1,000 independent RP choice sets). To
confirm that our findings generalize beyond the base case, we examine a case with fewer RP
choice sets as well as a case with a vector of five common attributes in x that can be pooled.
We also conduct an extensive parametric study by running simulations across the full sensitivity
range of each parameter in Table 2. For each parameter, we compare the WTP results from the
RP, SP, and pooled models as in Figure 2. Figures for each sensitivity case are provided in the
supplemental information.

5.1 Fewer Independent RP Choice Sets
Typical RP data sets often have very few choice sets (in some cases only one). Within each
choice set, the products on offer are held fixed, which limits the variation in the attributes. To
examine the effect of fewer choice sets on pooling with endogeneity bias, we run a simulation
using the same parameters in Table 2 except we use only one RP choice set (CR = 1), resulting
in all observed choices being made from the same set of products with the same unobserved
attributes zj . Figure 3 shows the results from 1,000 simulated RP and SP data sets for these
simulations.
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Figure 3: SP, RP, and pooled model results of the ratio of β̂ to βR for each test case
in Table 3. Each plot represents results from 1,000 simulated data sets using the base
case parameters in Table 2 except with CR = 1. The sampling variation is visualized
as a kernel density plot. For each data set, the LR test of pooling is conducted at 10%
significance.

Results are similar to those from the base case simulations except that the sampling variance
for the RP model is much greater. With only one choice set, the RP attribute variation is so
low that β̂ may only be weakly identified from the data, and the estimates for any given data
set may be quite far from the true parameter.10 However, because the SP model has a far lower
sampling variance, the pooled model sampling variance is substantially improved over that of
the RP model. The ideal case 2 illustrates why SP data is often used to augment deficient RP
data and indeed is a strong motivation for pooling.

In addition, since there is only one choice set and a single omitted variable that is common
to all choice observations, the IID assumption of the multinomial logit model is not satisfied,
which has important consequences.11 For example, if the IID error assumption is not met, the
sampling error no longer has the expected variance, and standard errors estimated from the
curvature of the misspecified likelihood function will be wrong. The error term dependence

10In comparing the results of our multistart algorithm, we found that for 95% of the simulations the optimizer
converged to the same solution from 10 different random starting points, suggesting the model is indeed identified
even with only 1 RP choice set. In the other 5% of simulations, the optimizer still converged to a discrete set of local
minima (as opposed to all different minima), suggesting that the model is still identified even in these cases.

11While this structure is a result of our simulation design, it can also potentially occur in real market data where
multiple choices are observed from a set of fixed alternatives with fixed attributes, such as in automotive sales data
for a single model year where vehicle attributes are fixed.
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also affects the sampling distribution of the chi-squared LR test statistic, resulting in an over-
rejection of pooling in cases where the data generating process is actually the same in both data
sets.

We see this over-rejection of the LR test in cases 2 and 6, which are much higher than the
expected 10%. In case 2 where the true parameters are actually the same and pooling should
be accepted, the LR test still rejects pooling in 81% of the simulations. We find similarly high
rejection rates in case 6 when the parameter biases are in the same direction and have similar
magnitudes. Figure 4 shows how the LR test H0 rejection rate approaches the nominal 10% for
cases 2 and 6 as the number of RP choice sets increases from 1 to 1,000, holding NR fixed at
1,000. In cases 1, 3, 4 and 5, we can also see that the power of the test to detect parameter
differences increases as the number of independent RP choice sets increases.
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Figure 4: Likelihood ratio test rejection frequency for the null hypothesis βR = βS as
a function of ρpz, δ, and CR. Each bar is computed from 1,000 simulations using the
base case parameters in Table 2. The dashed horizontal red line indicates the nominal
10% confidence level rejection rate.

Figure 5 illustrates how the error term dependence produced by having a small number of
choice sets affects the sampling distribution of the LR test statistic for test case 2 (when the
true RP and SP parameters are the same). The “QQ” plot compares the empirical quantiles of
the LR test statistics versus the theoretical asymptotic chi-squared quantiles. The plot shows
that when there is only one choice set in the RP data (the light gray points) the sampling
distribution of the LR test statistic is far from the theoretical chi-squared form from which we
compute the threshold for the hypothesis test. As CR increases and the number of observations
per choice set approaches one (CR → NR and nR → 1), the error term dependence decreases
and the sampling distribution of the LR test statistic becomes closer to the asymptotic chi-
squared distribution.12 Importantly, if the sampling distribution of the LR test statistic is not
chi-squared, then increasing the number of observations will not improve the LR test rejection

12Due to the omitted variable zj , the error term in the RP data generating process is the sum of a Gumbel random
variable and a normal random variable, which could also affect whether the LR test statistic is asymptotically chi-
squared. However, as we see in Figure 5, this issue appears to be minor in comparison to the violation of the IID
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rate. This suggests that researchers should use caution when applying the LR test to RP data
with a small number of choice sets or with low variation in attributes across choice sets.
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Figure 5: “QQ” plot of empirical quantiles of the LR test statistics versus the theoretical
asymptotic Chi-squared quantiles for test case 2. Test statistics are computed from 1,000
simulations using the base case parameters in Table 2 and varying CR while holding
NR fixed at 1,000.

5.2 Multiple Pooled Parameters
In our base case we have only one pooled attribute x for simplicity, but in typical pooled
models there are multiple common parameters that could potentially be pooled. To examine
this situation, we run a case with five common attributes in x = [x1, x2, x3, x4, x5]

′. In order to
isolate the effect of a context difference, we model x1 as the only attribute where true consumer
WTP differs between RP and SP contexts (controlled by δ). The data generation process is the
same as in our base case with all the same parameters, and the additional pooled parameters
βR
2 through βR

5 are each set to 1.
Results are nearly identical with those in our base case except that the additional WTP

coefficients for x2 through x5 in cases 4 through 6 are also biased upward due to the fact that
price endogeneity affects all WTP coefficients (see Figure 9 in the supplemental information).
We also ran a case with five common attributes, three RP-specific attributes, and three SP-
specific attributes, and results were again similar.

5.3 Parametric Sensitivity Analysis
We conduct an extensive parametric study by running simulations across the full sensitivity
range of each parameter in Table 2. For each parameter, we compare the WTP results from
the RP, SP, and pooled models as in Figure 2. Figures for each sensitivity case as well as a

assumption.
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table summarizing the qualitative effect of each sensitivity case are provided in the supplemental
information. The parameters that control the number of choice observations and the sizes of the
choice sets (NR, NS, AR, AS, and CR) primarily affect the relative balance of information in the
pooled model. Decreasing (increasing) the RP WTP parameter (βR) or the scale parameters
(λR and λS) increases (decreases) the sampling variance across simulations and also decreases
(increases) the information in the respective data set.

In addition to these general observations, we observe that the sign and magnitude of the ζ
coefficient (the WTP coefficient for the unobserved attribute z) influences our conclusions about
the LR test in the presence of endogeneity in the RP data. As we noted in Section 4, our base
case for test case 6 results in biased estimates of β̂ that share the same direction and magnitude
from the RP and SP data; as a result, the LR test largely fails to reject pooling. However,
when we increase the size of ζ, the bias from the endogeneity in the RP data becomes larger in
magnitude than that from the SP data, and the LR test largely rejects pooling. Likewise, when
ζ is negative, cases 4 and 6 swap in their interpretation, with case 4 having biases in the same
direction from each data source and case 6 having biases in opposite directions. The magnitude
of the RP bias is also affected by the sign and magnitude of ρpz (i.e. a higher correlation between
p and z increases the severity of the endogeneity).

6 Additional Considerations

6.1 Information Balance
The comparison between the sampling distributions for the RP estimates in Figure 2 and Figure
3 raises an important issue when pooling data: different data sources carry different levels of
information about unknown model parameters. The amount of information can be influenced by
a number of factors, including the number of observations, the levels of correlation and variation
among observed attributes, the number of distinct choice sets, and the number of alternatives in
the choice sets (Huber and Zwerina, 1996). For example, SP data are often highly informative
even with few choice observations because the observations come from many different choice sets
with alternatives and attributes that were designed specifically to create orthogonal variation in
the attributes.13 In contrast, as we can see in Figure 3, RP data often have large sample sizes
but can be relatively uninformative if they have only one or a small number of choice sets and/or
highly correlated attributes within choice sets (as is common in automotive choice data). Thus,
the balance of information between the RP and SP data cannot be gauged simply by comparing
sample sizes.

The pooled log-likelihood in equation (24) implicitly weights pooled parameter estimates
by the respective amounts of information available in each data set. When the RP and SP
parameters differ, the pooled estimate is effectively weighted closer to the parameter value of
the more informative data source. One way to characterize this implicit weighting is to compare
the elements of the respective Fisher information matrices, IS and IR, which measure the amount
of information a data set carries about the unknown model parameters. The information matrix
for each data set can be computed as the negative of the Hessian of the log-likelihood function.
Using the chain rule, we compute the RP and SP information matrices from the SP component
and RP component of the log-likelihood objective function in equation (24):

IS = −
CS∑
c=1

∑
i∈NS

c

∑
j∈J S

c

yijc
P S
jc∇2P S

jc −∇P S
jc
′∇P S

jc(
P S
jc

)2 (25)

IR = −
CR∑
c=1

∑
i∈NR

c

∑
j∈JR

c

yijc
PR
jc∇2PR

jc −∇PR
jc
′∇PR

jc(
PR
jc

)2 (26)

13Note that conjoint designs typically optimize the determinant of the FI for the preference space model, with the
exception of Toubia and Hauser (2007) who propose to optimize the determinant of the FI for the WTP parameters.
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where the ∇2 symbol is used to indicate the Hessian and the gradient and Hessian are taken with
respect to the vector of estimated model parameters. For the case of a logit model, equations
(25) and (26) reduce to:

IS = −
CS∑
c=1

∑
i∈NS

c

∑
j∈J S

c

yijc

∇2vSj −
∑
k∈J S

c

(
∇vSk

′∇P S
kc + P S

kc∇2vSk

) (27)

IR = −
CR∑
c=1

∑
i∈NR

c

∑
j∈JR

c

yijc

∇2vRj −
∑
k∈JR

c

(
∇vRk

′∇PR
kc + PR

kc∇2vRk

) (28)

From equations (27) and (28), the Fisher information depends not only on the sample size, but
also on the variation in the attributes.

In our base case simulation experiment in the WTP space, the parameters are λR, λS, and
β, and the observable component of utility is

vSj = λS (βxj − pj) ∴ ∇vSj =

[
βxj − pj
λSxj

]
∴ ∇2vSj =

[
0 xj
xj 0

]
(29)

vRj = λR (βxj − pj) ∴ ∇vRj =

[
βxj − pj
λRxj

]
∴ ∇2vRj =

[
0 xj
xj 0

]
(30)

For a pooled model, we compute the observed information from the SP and RP data sets
at the pooled model estimates. For each element in the diagonal of these matrices, we compute
a value, 0 ≤ ωk ≤ 1, which measures the proportion of expected information from the SP data
set:

ωk =
dSk

dRk + dSk
(31)

where dSk and dRk are the kth elements in the diagonals of IS and IR. By computing an estimate
of ωk using the observed information at the pooled model estimates, the modeler can gain
an understanding of how much each data set is informing the pooled model estimates (e.g.
individual attributes with limited variation in the RP data will be more strongly influenced by
the SP data—for an example, see Feit et al., 2010).14 Values of ωk closer to 0 suggest that
the RP data has a stronger influence on the parameter associated with attribute k while values
closer to 1 suggest the SP data has a stronger influence.

Figure 6 below shows how different balances of information between SP and RP data sets
can change the outcome of pooled model estimates for test case 4 (ρpz = 0.5, δ = 0.5). The
information balance is varied by increasing the SP sample size, NS, and the mean ω is computed
from the observed information at the estimated pooled parameters. As more SP data are
collected, the variance of the SP results shrinks, and the pooled model estimate moves toward
the SP estimate, reflected by ω.

14Our calculation of the Fisher Information for the multinomial logit model assumes that the errors are IID; as a
result, the FI for the RP data may be optimistic when error terms are correlated, as they are in our simulated data.



Helveston et al. Pooling SP and RP Data in the Presence of RP Endogeneity 20

_

_

_

_
_

_

_
_

_
N  

S = 750 (ω = 0.41)

0.5

1.0

1.5

2.0
2.5

SP Pooled RP SP Pooled RP SP Pooled RP
Model

N  

S = 1,500 (ω = 0.64) N  

S = 3,000 (ω = 0.81)

R
at

io
 o

f β
 to

 β
  R
 (l

og
 sc

al
e)

^

Figure 6: SP, RP, and pooled model results of β̂/βR for test case 4 (ρpz = 0.5, δ =
0.5). Each box plot represents results from 1,000 simulated data sets using the base
case parameters in Table 2 with different values of NS and thus different information
balances.

We chose our base case simulation parameters to produce data sets with relatively balanced
levels of information about the WTP parameter. To confirm this balance, we compute the
mean ω for β̂ at the estimated pooled parameters across all 1,000 simulations for each test case.
Table 4 shows that on average the base case SP data are slightly more informative than the
RP data for all test cases, which is consistent with the pooled estimates of β̂ in Figure 2 being
slightly closer to the SP estimates than RP estimates. The endogeneity in the RP data in cases
4 through 6 pushes the balance even further towards the SP data.

Table 4: RP and SP Information Balance for Base Case Simulations

Case mean(dRβ ) mean(dSβ) mean(ωβ)

1: “SP WTP Understated” 768 909 0.54
2: “Ideal” 552 784 0.59
3: “SP WTP Overstated” 256 399 0.61
4: “Two Wrongs Make a Right” 423 766 0.64
5: “RP Price Endogenous” 317 586 0.65
6: “Wrong In The Same Way” 153 252 0.62

6.2 Endogeneity Corrections
Outside of the literature on pooled models, researchers who work regularly with RP data have
developed several approaches to detect and correct endogeneity biases. We summarize those
approaches briefly (see Guevara, 2015, for a review in the transportation context).

Since most endogeneity problems are motivated by an omitted variable, one way to prevent
endogeneity is to make sure not to omit any variables that affect choice (Rossi, 2014) or to use
some proxy for the omitted variable (Guevara, 2015). Unfortunately, this is nearly impossible for
a complex product like an automobile. Most published automotive choice models omit important
product characteristics, particularly difficult-to-quantify attributes like styling, interior quality,
or sound quality.

A more common approach is to use a control function to correct the endogeneity (Villas-
Boas and Winer, 1999; Petrin and Train, 2010). This involves finding an instrument for each
potentially-endogenous observed variable, i.e. a variable that is correlated with the endogenous
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variable but uncorrelated with the outcome. Given a valid instrument, there are statistical tests
for detecting endogeneity such as the Hausman test (Wooldridge, 2015). While many potential
instruments have been proposed for endogenous prices in discrete choice models, including com-
petitor prices or lagged prices, there remain serious concerns that these instruments are weak
or invalid, resulting in parameter estimates that can be even more biased after a correction
attempt (Rossi, 2014; Guevara, 2015; Haaf et al., 2016).

If products are observed repeatedly across multiple choice sets (e.g. vehicle models observed
across multiple years in US automotive data), then another approach to account for omitted
variables is to estimate an alternative specific constant (ASC) for each product (constant across
choice sets). This fixed-effect acts as a proxy for the omitted variable and resolves the endogene-
ity. For example, if a vehicle design has particularly attractive styling and styling was omitted
from the RP model, then the estimated ASC for the model will be relatively high, reflecting the
greater appeal of the design due to the (omitted) styling. This eliminates the variation due to
z from the error term, thereby correcting the endogeneity. Identification of this model requires
variation in the observed correlated variable (e.g. price) without variation in the unobserved
variable (e.g. styling).

Despite the limitations of these methods, one might ask the question, “Why not use one
of these methods to correct the endogeneity in the RP data before pooling?” While this is
theoretically feasible, there are two potential drawbacks. First, the endogeneity correction
approaches require strong assumptions and/or data that is difficult or impossible to obtain.
Second, these procedures change the information balance between the RP and SP data. For
example, the instrumental variable approach effectively reduces the information in the RP data,
essentially discarding variation in the RP data that could inform the parameters because it is
potentially contaminated by endogeneity (Rossi, 2014). This may result in parameter estimates
that become largely informed by the SP data, and while this is not necessarily an undesirable
result, it does call into question the value of a pooled model over an SP model if they produce
nearly the same result.

To illustrate how an endogeneity correction can be used in a pooled model, we conduct a
simulation where product alternatives appear in multiple choice sets. Rather than indepen-
dently generating each of CR choice sets (each representing a particular market) as before in
equation (17), we instead assume that each alternative appears in multiple choice sets with the
observed attributes varying across choice sets but the unobserved attribute fixed across choice
sets. This approach allows us to examine the performance of endogeneity correction with ASCs
in a situation where we know the assumptions are correct. In practice, additional challenges
emerge when the unobserved attributes vary across choice sets or when the variation in observed
attributes across choice sets is insufficient.

Specifically, we generate alternatives j for RP choice sets such that each alternative appears
an equal number of times across all choice sets. For each alternative j, we draw an ASC ξj
(equivalent to drawing zj for a fixed ζ in equation (17)) from the standard normal distribu-
tion, and we draw one set of observed attributes [xjc, pjc] for each choice set c ∈ CRj in which
alternative j appears, conditional on ξj to maintain correlation ρpz in equation (18):

uRjc = λR
(
βRxjc − pjc + ξj

)
+ εRjc ∀j ∈ J R

c , ∀c ∈ CRj (32)

where CRj is the set of choice sets that contain alternative j, ξj is the WTP for unobserved
attributes of alternative j (the ASC), pjc is the price for alternative j when it appears in choice
set c, and xjc is the other observed attribute for alternative j when it appears in choice set c.
We simulate data sets using two scenarios: 3 RP choice sets of 2 alternatives each, and 10 RP
choice sets of 5 alternatives each. We compare the results with and without ASCs and examine
test cases 5 and 6. In both test cases price is endogenous in the RP data, but in test case 6
the SP WTP is over-stated whereas in test case 5 it is not. Figure 7 shows the results of each
simulation.
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For test case 5 (the top row), including the ASCs corrects the endogeneity in the RP data
and the LR test performs as expected, accurately rejecting pooling without the endogeneity
correction and accepting pooling with it. For test case 6 (the bottom row), the effect of including
the ASCs is sensitive to the number of RP choice sets. With 10 choice sets (the lower-right
boxes), including the ASCs corrects the endogeneity bias and the LR test accurately rejects
pooling. However, with only 3 RP choice sets (the lower-left boxes), the addition of the ASCs
does correct the endogeneity bias, but due to the low number of choice sets the LR test largely
fails to reject pooling, only rejecting in 23% of the simulations. In this particular situation, the
modeler may falsely conclude that the RP and SP parameters are the same after correcting the
endogeneity when they are in fact not, resulting in a biased pooled WTP estimate driven by
the SP data.

This simulation result illustrates several drawbacks of using ASCs to correct the endogeneity
bias in pooled models. First, this approach requires that the omitted variable be associated
with an alternative that is observed repeatedly over multiple choice sets; otherwise it is not
identified. Further, the prices and other observed attributes must vary across choice sets yet
still be correlated with the unobserved variable, and the unobserved variable must be constant
across choice sets. Even under these conditions, using data with fewer choice sets and less
variation in pricing, we found the estimator can be unstable.15 Second, if the WTP parameters
are weakly identified by the RP data, the LR test may fail to reject pooling, providing false
confidence that the RP and SP parameters are the same.

In summary, endogeneity corrections could work in a pooled model so long as the required
assumptions of the endogeneity correction approach are satisfied and appropriate data are avail-
able. However, even if a data set has a structure that satisfies these strong assumptions, the
endogeneity correction could tilt the information balance between the RP and SP data. This
balance could be checked using the information balance statistics proposed in Section 6.1.

6.3 Limitations
We focus on (1) price endogeneity from omitted variables and (2) contextual differences as two
specific issues that affect parameter estimates, but there are a number of other modeling concerns
that we have not addressed, such as other forms of model misspecification and measurement
error that can also lead to biased parameter estimates. We also do not address concerns with
state-dependence effects (e.g. when the RP choices an individual makes influences his or her SP
choices) or serial correlations across multiple responses in cases where the RP and SP respondents
are the same (Bhat and Castelar, 2002; Morikawa, 1994).

Our simulation experiment makes several simplifying assumptions. For example, the ho-
mogeneous mulitnomial logit model used in this experiment has the Independence of Irrelevant
Alternatives (IIA) property (Train, 2009). While it is unclear how pooled models will be affected
by more flexible substitution patterns such as mixed logit models (McFadden and Train, 2000;
Brownstone et al., 2000) or hierarchical models (Feit et al., 2010), we expect our general ob-
servations will hold, since misspecified models with endogenous parameters will produce biased
parameter estimates regardless of the model structure if the endogeneity is not corrected.

7 Conclusions
Using a synthetic data experiment, we test the performance of pooled RP-SP models in recov-
ering true market preference parameters when (1) there is potential for endogeneity problems in
the RP data and (2) when consumer willingness to pay for attributes from the survey context,
βS, may differ from that of the market context, βR.

15The maximum likelihood estimator for the multinomial logit model (or any limited dependent variable model)
with fixed-effects is inconsistent if the number of choice sets is held fixed (Greene, 2004), i.e. the estimator does not
converge to the true value as the number of observations increases and the number of choice sets is held fixed.
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Our results suggest that modelers considering pooling SP and RP data for parameter esti-
mation should first assess whether each data source can provide unbiased estimates of the true
market preference parameters βR. The SP data may provide good estimates of βS but poor
estimates of βR if consumers respond differently in the survey context than in a market context
(βR 6= βS), and the RP data may provide poor estimates of βR if unobserved attributes corre-
lated with observed attributes create endogeneity bias. If either data set alone produces biased
estimates of βR, pooling is unlikely to improve parameter estimates. Furthermore, the LR test
may not offer clear guidance about whether or not to pool when there is a possibility that both
sources of bias are in the same direction (Case 6 in our simulation experiment). We also intro-
duced a new metric for assessing information balance that can help the modeler understand the
extent to which parameter estimates are informed by each data source.

Addressing the source of bias (e.g. by providing appropriate respondent incentives in the SP
context and by controlling for endogeneity when modeling the RP data) is a potential solution.
However, even under ideal conditions, endogeneity correction may be an imperfect solution
unless all of the data requirements and assumptions of the endogeneity correction are met.
Endogeneity corrections may also alter the balance of information between the two data sets,
which could be assessed using the proposed information balance metric.

Even when no endogeneity bias is present, the chi-squared LR test that has been widely used
to justify pooling relies on the assumption that errors are IID. If the RP data contain repeated
choice observations in only a small number of RP choice sets, as is common in practice, the errors
may not be close to IID, and the LR test may produce misleading results, such as artificially
inflating the rejection rate of the null pooling hypothesis. Alternatively, though it does not offer
a statistical test, a scatterplot of the estimates of β̂S from the SP model and β̂R from the RP
model can help the modeler assess whether pooling is supported and identify any attributes
that should not be pooled, although this approach may still be unable to identify the case where
parameter biases are in the same direction (Case 6 in our simulation experiment).

When the goal is to build a model that produces unbiased marketplace preference parameter
estimates, modelers should carefully consider the potential for statistical bias in the RP data
before making pooling choices, since pooling does not necessarily reduce these biases and in
some cases can make them worse. In the absence of statistical biases in the RP data or con-
text differences in the SP data, pooling data sources provides many useful purposes, such as
adding additional information about the parameters, reducing multicollinearity, and allowing
the incorporation of attributes that do not appear in the market.
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8.2 Supplemental Figures
Base Case: All Pooled Model Parameters
Figure 8 shows the ratio of estimated to true parameters for all of the pooled model parameters.
Depending on the case, the modeler could make false conclusions about both consumer WTP for
attributes (β̂) as well as how consistently consumers make choices in the RP versus SP contexts
(λ̂R and λ̂S). For example, in case 2 the estimated RP scale parameter is less than it’s true
parameter λR = 1 because the omitted unobserved variable increases the variance of the error
term, thus decreasing scale. The presence of endogeneity exacerbates the effect; in particular,
in test case 6 when the LR test would largely accept pooling, the modeler may falsely conclude
that respondents make much more consistent choices in the RP context than SP context.
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Figure 8: Ratio of estimated to true parameters for all pooled model parameters in
each test case in Table 3. Each plot represents results from 1,000 simulated data sets
using the base case parameters in Table 2. Sampling variation is visualized with a kernel
density plot. The red dashed line shows the true parameter values of the data-generating
function.

Sensitivity Case: Multiple Pooled Parameters
Figure 9 shows the WTP coefficients from 1,000 simulations of the model with five pooled
attributes. Results are nearly identical to those in our base case except that the additional
WTP coefficients for x2 through x5 in cases 4 through 6 are also biased upward due to the
fact that price endogeneity affects all WTP coefficients. We also ran a case with five common
attributes, three RP-specific attributes, and three SP-specific attributes, and results were again
are similar to those in Figure 9.
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Figure 9: Ratio of estimated to true parameters for pooled model with 5 pooled at-
tributes. The context effect controlled by δ only affects β1. Each box plot represents
1,000 simulations using the parameters in Table 2. Sampling variation is visualized
with a kernel density plot. The red dashed line shows the true parameter values of the
data-generating function.

8.3 Base Case Results in the Preference Space
The Pooled Model in the Preference Space
For readers more familiar with the preference space utility model, we conduct our base case
simulation in the preference space for comparison with the results in the WTP space in Section
4. We begin by specifying the utility for SP and RP data in the preference space, which follows
the form of equation (3):

uSj = βS′
xj − αSpj + γS′

yS
j + εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(33)

uRj = βR′
xj − αRpj + γR′

yR
j + ζ′zj + εRj , εRj ∼ Gumbel

(
0,
π2

6

)
(34)

As in Section 2.2, we separate out the attributes into two vectors: xj represents attributes that
are common between the RP and SP data sets, and yj represents those attributes observed in
only one of the contexts and not the other (price, pj , is noted separately from xj and exists in
both contexts). Finally, zj represents attributes unobserved by the modeler and is only present
in the RP utility expression.

Recall that the parameters α and β in the utility expressions in equations (33) and (34)
are scaled by the scale of the error term (λ = 1/σ) to achieve an identifiable utility model
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with a standardized error term εj = (ε∗j/σ), where ε∗j is the unscaled error term with variance
σ2(π2/6). To account for potential scale differences between the RP and SP data, the pooled
model restricts (33) and (34) such that λSαS = λRαR and λSβS = λRβR. Since both λS and λR
terms are not separately identifiable, a “scale ratio” term is defined as λ = λS/λR. The resulting
pooled utility specification is given by:

uSj = λ
(
β′xj − αpj + γS′

yS
j

)
+ εSj , εSj ∼ Gumbel

(
0,
π2

6

)
(35)

uRj = β′xj − αpj + γR′
yR
j + ζ′zj + εRj , εRj ∼ Gumbel

(
0,
π2

6

)
(36)

where α and β are now modeled as parameters common to the two utility models and λ accounts
for potential differences in error scaling.

Base Case Simulation in the Preference Space
To conduct our base case simulation experiment in the preference space, we mirror the same
data generation process as described in Section 3.1 except we use different equations for the
SP and RP utility functions. Specifically, for the SP and RP data, we substitute the following
preference space utility models for equations (14) and (17):

uSj = βSxj − αSpj + εSj , εSj ∼ Gumbel
(
0,
π2

6

)
(37)

uRj = βRxj − αRpj + ζzj + εRj , εRj ∼ Gumbel
(
0,
π2

6

)
(38)

SP context differences are defined in the same way as the WTP space model where SP WTP is
equal to the RP WTP parameter scaled by δ:(

βS/αS
)
= δ

(
βR/αR

)
(39)

We then estimate a pooled model where the z term is omitted from the RP utility specifica-
tion as an unobserved variable:

uSj = λ̂
(
β̂xj − α̂pj

)
+ εSj (40)

uRj = β̂xj − α̂pj + εRj (41)

where α̂ and β̂ are common between the two models, and the hats on the parameters indicate
that they are estimated.

Base Case Results in the Preference Space
We simulate 1,000 sets of RP and SP data for each of the six test cases in Table 3 and then
use them to estimate RP, SP, and pooled models. Figures 10 and 11 show the ratio between
the estimated and true model coefficients for αR and βR, respectively, for each test case using
the base case parameters in Table 2 (we use 1 for αS and αR). Figure 12 shows the results of
all pooled model parameters (λ, α, and β). Finally, Figure 13 shows the ratio of the computed
WTP from the estimates of the preference space models (β̂/α̂) to the true computed WTP in
the RP context (βR/αR). The plots show the distribution of the ratios across 1,000 simulations
using a logarithmic y-axis for comparing ratios.

These results can initially be challenging to interpret. Figure 10 shows that for the price
parameter, α̂, the estimates are biased as would be expected, with the pooled model estimate
generally falling between the SP-only and RP-only estimates. However, Figure 11 shows that the
pooled model estimate for β is sometimes lower than either the SP-only or RP-only estimate.
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To interpret these trends, we must simultaneously consider the role of the estimated scale ratio
parameter in these models. Figure 12 shows the estimates for λ̂, α̂ and β̂ for the pooled
model. The estimates for case 1, where the SP WTP is understated, show that the scale ratio
(λ = λS/λR) is estimated to be about 1.75. When the WTP is altered by δ, it also affects the
relative error scale between the two data sources. When we multiply the estimated β̂ by the
estimated error scale λ̂, we approximately recover the true βR. Comparing the pooled model
results in the preference space in Figure 12 to those in the WTP space in Figure 8, one can
see that the WTP space pooled model also has biased scale parameters due to the SP context
difference, but this only affects the estimates of the scale terms λ̂S and λ̂R and does not affect
other model parameters besides β̂.

To compare the preference-space results more directly to the WTP-space model, we compute
WTP post-hoc from the parameter estimates of the preference space model (i.e. β̂/α̂). Figure 13
summarizes these results, which closely match those from our base case simulation in the WTP
space (Figure 2). Thus the results from a preference space parameterization of our simulation
are equivalent to those from a WTP space parameterization. We find interpretation cleaner in
the WTP-space, which parametrically isolates WTP (ratio of utility of non-price attributes to
utility of price) from the scale terms (ratio of utility of attributes to the scale of the error term),
rather than jointly interpreting the estimates of α̂, β̂, and λ̂ in Figures 10, 11, and 12 in the
preference space. The WTP space facilitates comparison of model parameter estimates across
different models without the need for extra computations after model estimation, and we focus
on WTP-space models exclusively in the main text.
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Figure 10: SP, RP, and pooled model results of the ratio of α̂ to αR for each test case
in Table 3. Each plot represents results from 1,000 simulated data sets using the base
case parameters in Table 2. Sampling variation is visualized with a kernel density plot.
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Figure 11: SP, RP, and pooled model results of the ratio of β̂ to βR for each test case
in Table 3. Each plot represents results from 1,000 simulated data sets using the base
case parameters in Table 2. Sampling variation is visualized with a kernel density plot.
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Figure 12: Ratio of estimated to true parameters for all pooled model parameters in
each test case in Table 3. Each plot represents results from 1,000 simulated data sets
using the base case parameters in Table 2. Sampling variation is visualized with a kernel
density plot.
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Figure 13: SP, RP, and pooled model results of the ratio of the computed WTP from
the estimates of the preference space model (β̂/α̂) to the computed WTP from the true
RP context preference space parameters (βR/αR) for each test case in Table 3. Each
plot represents results from 1,000 simulated data sets using the base case parameters in
Table 2. Sampling variation is visualized with a kernel density plot.

8.4 Data Set Characteristics and Fisher Information
A number of characteristics influence the amount of information a data set carries about the
unknown model parameters. In particular, we examine the relationships between the Fisher
Information and the number of observations, the correlation among observed attributes, the
number of different choice sets, and the number of alternatives in the choice sets. To illustrate
these relationships, we simulate sets of choice data for a simple two product case and then
compute the determinant of the information matrix at the true parameters. By varying one
characteristic while holding all others constant, we can visualize the relationships between these
attributes and data set information, as shown in Figure 14. We use the determinant of the
information matrix as an approximation for the overall total amount of information in a data
set.

The amount of information is quadratically related to the number of choice observations
(Figure 14a), making sample size a large determinant of the overall amount of information.
Increasing the number of alternatives in a choice set (Figure 14b) has diminishing returns on
information and follows a logarithmic relationship. As Figure 14c illustrates, the correlation
between attributes in the data set is critical. While low correlations have a limited impact
on information, highly correlated attributes can dramatically reduce the level of information.
Finally, increasing the number of choice sets in a data set, which is the same as adding more
variation among the attributes, does not necessarily affect the overall amount of information
but rather the variation in the amount of information across different data sets. As Figure
14d shows, a low number of choice sets results in high variation in the amount of information
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(a) Number of observations
(default = 10,000).
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(b) Number of alternatives per choice set
(default = 50).

0e+00

1e+08

2e+08

3e+08

0 5000 10000 15000 20000

0e+00

1e+08

2e+08

3e+08

0 25 50 75 100

0e+00

1e+08

2e+08

3e+08

0.00 0.25 0.50 0.75 1.00

0e+00

1e+08

2e+08

3e+08

0 25 50 75 100

Number of Observations 
(Default = 10,000)

Number of Alternatives per Choice Set 
(Default = 50)

Number of Choice Sets 
(Default = 50)

Correlation Between Attributes 
(Default = 0)

D
et

er
m

in
an

t o
f I

nf
or

m
at

io
n 

M
at

rix

D
et

er
m

in
an

t o
f I

nf
or

m
at

io
n 

M
at

rix
D

et
er

m
in

an
t o

f I
nf

or
m

at
io

n 
M

at
rix

D
et

er
m

in
an

t o
f I

nf
or

m
at

io
n 

M
at

rix

(c) Correlation between attributes
(default = 0).
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(d) Number of choice sets
(default = 50).

Figure 14: Relationships between data set characteristics and Fisher Information.

(depending on the random draw of data), but as the number of choice sets increases the amount
of variation among the attributes also increases which decreases the variation in the information.
Taking all of these factors together illustrates how some data sets (such as aggregate market
data with highly correlated attributes) can be relatively uninformative about attributes even
with large sample sizes.
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8.5 Sensitivity Analysis Figures
This section provides plots of the WTP parameter estimates for each sensitivity case in Table 2.
In each plot, the light colors represent the base case and the dark colors represent the sensitivity
case. Table 6 below shows the sensitivity ranges examined for each variable as well as the figures
associated with each sensitivity case.

Table 6: Summary of sensitivity cases

Parameter Base
Case

Sensitivity
Case

Sampling
Variance

RP Data
Information

SP Data
Information

Information
Balance

Figure
Number

λR 1
0.1 Increases Decreases – SP greater 15
5 Decreases Increases – RP greater 16

λS 1
0.1 Increases – Decreases RP greater 17
5 Decreases – Increases SP greater 18

βR 1
0.5 Increases Decreases – SP greater 19
2 Decreases Increases – RP greater 20

ζ 1
-1 – Decreases – SP greater 21
1.5 – Decreases – SP greater 22

ρpx 0 0.5 – Decreases – SP greater 23

NR 1000
500 Increases Decreases – SP greater 24
5000 Decreases Increases – RP greater 25

NS 1500
500 Increases – Decreases RP greater 26
5000 Decreases – Increases SP greater 27

AR 15
3 Increases Decreases – SP greater 28
100 Decreases Increases – RP greater 29

AS 3
2 Increases – Decreases RP greater 30
10 Decreases – Increases SP greater 31

CR 1000
1 Increases Decreases – SP greater 32
1000 Decreases Increases – RP greater 33
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Figure 15: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where λR = 0.1. Each box plot contains 100 simulated data sets.
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Figure 16: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where λR = 5. Each box plot contains 100 simulated data sets.
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Figure 17: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where λS = 0.1. Each box plot contains 100 simulated data sets.
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Figure 18: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where λS = 5. Each box plot contains 100 simulated data sets.
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Figure 19: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where βR = 0.5. Each box plot contains 100 simulated data sets.
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Figure 20: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where βR = 2. Each box plot contains 100 simulated data sets.
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Figure 21: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where ζ = −1.5. Each box plot contains 100 simulated data sets.
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Figure 22: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where ζ = 1.5. Each box plot contains 100 simulated data sets.
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Figure 23: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where ρpx = 0.5. Each box plot contains 100 simulated data sets.
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Figure 24: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where NR = 500. Each box plot contains 100 simulated data sets.
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Figure 25: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where NR = 5000. Each box plot contains 100 simulated data sets.
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Figure 26: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where NS = 500. Each box plot contains 100 simulated data sets.
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Figure 27: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where NS = 5000. Each box plot contains 100 simulated data sets.
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Figure 28: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where AR = 3. Each box plot contains 100 simulated data sets.
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Figure 29: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where AR = 100. Each box plot contains 100 simulated data sets.
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Figure 30: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where AS = 2. Each box plot contains 100 simulated data sets.
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Figure 31: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where AS = 10. Each box plot contains 100 simulated data sets.

0.5

1.0

2.0

0.5

1.0

2.0

δ = 0.5 δ = 1 δ = 2 

ρpz = 0

ρpz = 0.5

5: RP biased4: Two wrongs make a right 6: Wrong in the same way

1:  SP WTP understated 2: Ideal 3: SP WTP overstated

SP Pooled RP SP Pooled RP SP Pooled RP

R
at

io
 o

f β
 to

 β
 R
 (l

og
 sc

al
e)

ˆ

Model
Case

Base Sensitivity 

Figure 32: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where TR = 1. Each box plot contains 100 simulated data sets.
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Figure 33: Ratio of β̂ to β for the base case (light color) and sensitivity case (dark color)
where CR = 200. Each box plot contains 100 simulated data sets.


