4,114 research outputs found

    The effect of functional cecotomy on food and water intake in the rat

    Get PDF
    The effect of functional ceco tomy on ingestion and excretory behavior in the rat was viewed as a short term (ST) and long term (LT) stress adjustment. Findings in bo th ST and LT conditio ns were discussed in terms of the Mayerian parameters of precision, rapidity, sensitivity, and reliability. Under functional cecotomy water intake, fecal moisture content and dry fecal weight increased. Food intake remained constant. Stress adjustment in terms of the 4 parameters of ST and LT regulation were discussed as correlations and their accompanying standard errors over daily, 3-day, and 7-day time intervals. The standard error s increased with stress. The results agreed with Mayer\u27s findings which indicated that LT regulation is less rapid and less precise than ST regulation

    Experimental evolution reveals hidden diversity in evolutionary pathways

    No full text
    Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans

    The impact of fat and obesity on bone microarchitecture and strength in children

    Get PDF
    A complex interplay of genetic, environmental, hormonal, and behavioral factors affect skeletal development, several of which are associated with childhood fractures. Given the rise in obesity worldwide, it is of particular concern that excess fat accumulation during childhood appears to be a risk factor for fractures. Plausible explanations for this higher fracture risk include a greater propensity for falls, greater force generation upon fall impact, unhealthy lifestyle habits, and excessive adipose tissue that may have direct or indirect detrimental effects on skeletal development. To date, there remains little resolution or agreement about the impact of obesity and adiposity on skeletal development as well as the mechanisms underpinning these changes. Limitations of imaging modalities, short duration of follow-up in longitudinal studies, and differences among cohorts examined may all contribute to conflicting results. Nonetheless, a linear relationship between increasing adiposity and skeletal development seems unlikely. Fat mass may confer advantages to the developing cortical and trabecular bone compartments, provided that gains in fat mass are not excessive. However, when fat mass accumulation reaches excessive levels, unfavorable metabolic changes may impede skeletal development. Mechanisms underpinning these changes may relate to changes in the hormonal milieu, with adipokines potentially playing a central role, but again findings have been confounding. Changes in the relationship between fat and bone also appear to be age and sex dependent. Clearly, more work is needed to better understand the controversial impact of fat and obesity on skeletal development and fracture risk during childhood

    Parameter estimation on compact binary coalescences with abruptly terminating gravitational waveforms

    Full text link
    Gravitational-wave astronomy seeks to extract information about astrophysical systems from the gravitational-wave signals they emit. For coalescing compact-binary sources this requires accurate model templates for the inspiral and, potentially, the subsequent merger and ringdown. Models with frequency-domain waveforms that terminate abruptly in the sensitive band of the detector are often used for parameter-estimation studies. We show that the abrupt waveform termination contains significant information that affects parameter-estimation accuracy. If the sharp cutoff is not physically motivated, this extra information can lead to misleadingly good accuracy claims. We also show that using waveforms with a cutoff as templates to recover complete signals can lead to biases in parameter estimates. We evaluate when the information content in the cutoff is likely to be important in both cases. We also point out that the standard Fisher matrix formalism, frequently employed for approximately predicting parameter-estimation accuracy, cannot properly incorporate an abrupt cutoff that is present in both signals and templates; this observation explains some previously unexpected results found in the literature. These effects emphasize the importance of using complete waveforms with accurate merger and ringdown phases for parameter estimation.Comment: Very minor changes to match published versio

    Calcareous Nannoplankton Assemblages across the Pliocene-Pleistocene Transition in the Southwestern Indian Ocean, IODP Site U1475

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 361 cored six sites along the greater Agulhas Current system. An objective of this expedition was to determine the dynamics of the Indian-Atlantic Ocean Gateway circulation during Pliocene-Pleistocene climate changes in association with changing wind fields and migrating ocean fronts. The Indian-Atlantic Ocean Gateway contains a pronounced oceanic frontal system, the position of which has the potential to influence global climate on millennial scales. Owing to the physical differences between the frontal zones, this region has complex biogeochemistry, changes in phytoplankton distribution, and variations in primary productivity. Site U1475 was cored on the Agulhas Plateau in the Southwestern Indian Ocean and recovered a complete sequence of calcareous ooze spanning the last ~7 Ma. The calcareous nannoplankton assemblage shows an increase of taxa associated with cooler water across the Pliocene-Pleistocene Transition (PPT) interval suggesting that a long- term change in sea surface temperature and nutrient availability took place across the PPT, potentially linked to the northward migration of the Subtropical Front
    • …
    corecore