75 research outputs found
Recommended from our members
Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release.
Utilizing metal-organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs' large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.M.H.T. thanks the Gates Cambridge Trust for funding, S. Haddad, D. Vulpe and Dr. C. Hockings for helpful discussions, and Dr. J. McMillan at the Cambridge Advanced Imaging Centre (CAIC), University of Cambridge. D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. O.K.F. and J.T.H. gratefully acknowledge DTRA for financial support (grant HDTRA-1-14-1-0014). C.F.K. acknowledges funding from the UK Engineering and Physical Sciences Research Council, EPSRC (grants EP/L015889/1 and EP/H018301/1), the Wellcome Trust (grants 3-3249/Z/16/Z and 089703/Z/09/Z) and the UK Medical Research Council, MRC (grants MR/K015850/1 and MR/K02292X/1), and Infinitus (China) Ltd. Computational work was supported by the Cambridge High Performance Computing Cluster, Darwin
The fibre of a pinch map in a model category
In the category of pointed topological spaces, let F be the homotopy fibre of the
pinching map X ∪ CA → X ∪ CA/ X from the mapping cone on a cofibration A → X
onto the suspension of A. Gray (Proc Lond Math Soc (3) 26:497–520, 1973) proved
that F is weakly homotopy equivalent to the reduced product (X, A)∞. In this paper
we prove an analogue of this phenomenon in a model category, under suitable
conditions including a cube axiom.Web of Scienc
Recommended from our members
A Highly Porous Metal-Organic Framework System to Deliver Payloads for Gene Knockdown
© 2019 Elsevier Inc. Gene knockdown is an advantageous therapeutic strategy to lower dangerous genetic over-expression. However, the molecules responsible for initiating this process are unstable. Porous nanoparticles called metal-organic frameworks can encapsulate, protect, and deliver these compounds efficaciously without the need for chemical modifications—commonly done to enhance stability. By applying this platform technology, this work demonstrates the successful reduction in expression of a gene by avoiding retention and subsequent degradation in cellular compartments.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380, and (SUPUVIR) no. 722380. M.H.T. thanks the Gates Cambridge Trust for funding, S. Haddad for helpful discussions, and A. Li for assistance with data visualization. D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. S.B.d.Q.F., F.M.R., and D.I.J. were funded by Cancer Research UK Senior Group Leader Grant CRUK/A15678. O.K.F. gratefully acknowledges DTRA for financial support (grant HDTRA-1-14-1-0014). C.F.K. acknowledges funding from the UK Engineering and Physical Sciences Research Council (grants EP/L015889/1 and EP/H018301/1), the Wellcome Trust (grants 3-3249/Z/16/Z and 089703/Z/09/Z) and the UK Medical Research Council (grants MR/K015850/1 and MR/K02292X/1), and Infinitus (China) Ltd. Computational work was supported by the Cambridge High Performance Computing Cluster, Darwin
OptiJ: Open-source optical projection tomography of large organ samples
Abstract: The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples
OptiJ: Open-source optical projection tomography of large organ samples
The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples
Single particle trajectories reveal active endoplasmic reticulum luminal flow
The endoplasmic reticulum (ER), a network of membranous sheets and pipes, supports functions encompassing biogenesis of secretory proteins and delivery of functional solutes throughout the cell[1, 2]. Molecular mobility through the ER network enables these functionalities, but diffusion alone is not sufficient to explain luminal transport across supramicrometre distances. Understanding the ER structure–function relationship is critical in light of mutations in ER morphology-regulating proteins that give rise to neurodegenerative disorders[3, 4]. Here, super-resolution microscopy and analysis of single particle trajectories of ER luminal proteins revealed that the topological organization of the ER correlates with distinct trafficking modes of its luminal content: with a dominant diffusive component in tubular junctions and a fast flow component in tubules. Particle trajectory orientations resolved over time revealed an alternating current of the ER contents, while fast ER super-resolution identified energy-dependent tubule contraction events at specific points as a plausible mechanism for generating active ER luminal flow. The discovery of active flow in the ER has implications for timely ER content distribution throughout the cell, particularly important for cells with extensive ER-containing projections such as neurons.Wellcome Trust - 3-3249/Z/16/Z and 089703/Z/09/Z [Kaminski]
UK Demential Research Institute [Avezov]
Wellcome Trust - 200848/Z/16/Z, WT: UNS18966 [Ron]
FRM Team Research Grant [Holcman]
Engineering and Physical Sciences Research Council (EPSRC) - EP/L015889/1 and EP/H018301/1 [Kaminski]
Medical Research Council (MRC) - MR/K015850/1 and MR/K02292X/1 [Kaminski
- …