3,283 research outputs found
Semioquímicos no controle de insetos-praga.
bitstream/CENARGEN/30145/1/fazendeiro150207.pdfPublicado em 15/02/2007. Disponível em: Fazendeiro, fazendeiro150207
Linearisable third order ordinary differential equations and generalised Sundman transformations
We calculate in detail the conditions which allow the most general third
order ordinary differential equation to be linearised in X'''(T)=0 under the
transformation X(T)=F(x,t), dT=G(x,t)dt. Further generalisations are
considered.Comment: 33 page
Vacuum Structure and Dark Energy
We consider that the universe is trapped in an excited vacuum state and the
resulting excitation energy provides the observed dark energy. We explore the
conditions under which this situation can arise from physics already known.
Considering the example of how macroscopic QED fields alter the vacuum
structure, we find that the energy scale 1 meV --- 1 eV is particularly
interesting. We discuss how dark energy of this form is accessible to
laboratory experiments.Comment: 5 pages, 2 figures; recognized for Honorable Mention in 2010 Gravity
Research Foundation Awards for Essays on Gravitation, in press with Int. J.
Mod. Phys.
A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy
In this paper, we study the properties of a nonlinearly dispersive integrable
system of fifth order and its associated hierarchy. We describe a Lax
representation for such a system which leads to two infinite series of
conserved charges and two hierarchies of equations that share the same
conserved charges. We construct two compatible Hamiltonian structures as well
as their Casimir functionals. One of the structures has a single Casimir
functional while the other has two. This allows us to extend the flows into
negative order and clarifies the meaning of two different hierarchies of
positive flows. We study the behavior of these systems under a hodograph
transformation and show that they are related to the Kaup-Kupershmidt and the
Sawada-Kotera equations under appropriate Miura transformations. We also
discuss briefly some properties associated with the generalization of second,
third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear
Mathematical Physics, has expanded discussio
3+1D hydrodynamic simulation of relativistic heavy-ion collisions
We present MUSIC, an implementation of the Kurganov-Tadmor algorithm for
relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios.
This Riemann-solver-free, second-order, high-resolution scheme is characterized
by a very small numerical viscosity and its ability to treat shocks and
discontinuities very well. We also incorporate a sophisticated algorithm for
the determination of the freeze-out surface using a three dimensional
triangulation of the hyper-surface. Implementing a recent lattice based
equation of state, we compute p_T-spectra and pseudorapidity distributions for
Au+Au collisions at root s = 200 GeV and present results for the anisotropic
flow coefficients v_2 and v_4 as a function of both p_T and pseudorapidity. We
were able to determine v_4 with high numerical precision, finding that it does
not strongly depend on the choice of initial condition or equation of state.Comment: 16 pages, 11 figures, version accepted for publication in PRC,
references added, minor typos corrected, more detailed discussion of
freeze-out routine adde
A nonlocal connection between certain linear and nonlinear ordinary differential equations/oscillators
We explore a nonlocal connection between certain linear and nonlinear
ordinary differential equations (ODEs), representing physically important
oscillator systems, and identify a class of integrable nonlinear ODEs of any
order. We also devise a method to derive explicit general solutions of the
nonlinear ODEs. Interestingly, many well known integrable models can be
accommodated into our scheme and our procedure thereby provides further
understanding of these models.Comment: 12 pages. J. Phys. A: Math. Gen. 39 (2006) in pres
Estudo da vegetação matriz em ambiente de transição floresta-cerrado da RESEX Rio Cajarí, Amapá.
An AB effect without closing a loop
We discuss the consequences of the Aharonov-Bohm effect in setups involving
several charged particles, wherein none of the charged particles encloses a
closed loop around the magnetic flux. We show that in such setups, the AB phase
is encoded either in the relative phase of a bi-partite or multi-partite
entangled photons states, or alternatively, gives rise to an overall AB phase
that can be measured relative to another reference system. These setups involve
processes of annihilation or creation of electron/hole pairs. We discuss the
relevance of such effects in "vacuum Birefringence" in QED, and comment on
their connection to other known effects.Comment: 4 pages, 3 figure
Thermal conductance of thin film YIG determined using Bayesian statistics
Thin film YIG (YFeO) is a prototypical material for
experiments on thermally generated pure spin currents and the spin Seebeck
effect. The 3-omega method is an established technique to measure the
cross-plane thermal conductance of thin films, but can not be used in YIG/GGG
(GaGdO) systems in its standard form. We use two-dimensional
modeling of heat transport and introduce a technique based on Bayesian
statistics to evaluate measurement data taken from the 3-omega method. Our
analysis method allows us to study materials systems that have not been
accessible with the conventionally used 3-omega analysis. Temperature dependent
thermal conductance data of thin film YIG are of major importance for
experiments in the field of spin-caloritronics. Here we show data between room
temperature and 10 K for films covering a wide thickness range as well as the
magnetic field effect on the thermal conductance between 10 K and 50 K
Piezoelectric-based apparatus for strain tuning
We report the design and construction of piezoelectric-based apparatus for
applying continuously tuneable compressive and tensile strains to test samples.
It can be used across a wide temperature range, including cryogenic
temperatures. The achievable strain is large, so far up to 0.23% at cryogenic
temperatures. The apparatus is compact and compatible with a wide variety of
experimental probes. In addition, we present a method for mounting
high-aspect-ratio samples in order to achieve high strain homogeneity.Comment: 8 pages, 8 figure
- …
