477 research outputs found

    Solvent extraction aplied to the recovery of heavy metals from galvanic sludges

    Get PDF
    In this study, a hydrometallurgical treatment involving the solvent extraction and recovery of some heavy metals from a sulphuric acid leach solution of galvanic sludge, using di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and bis-(2,4,4- trimethylpentyl)-phosphinic acid (Cyanex 272), both diluted in kerosene, has been investigated. The preliminary tests revealed the necessity to remove other metal species than zinc and nickel, contained in the leach solution, and therefore, processes to cement copper and precipitate chromium were then applied to finally obtain a Zn and Ni pregnant solution prior to solvent extraction. For the experimental conditions studied, Cyanex 272 showed a good recovery of Zn after the stripping stage using H2SO4, but D2EHPA effectively promoted a higher Zn extraction than Cyanex 272 did. The dependence of the solvent extraction method on variables such as pH, contact time and concentration of extractant, as well as the effect of different concentrations of sulphuric acid on stripping, are discussed. The discussion also includes the previous conditions developed to separate the main interfering metallic species from the leach solution in order to improve the extraction and recovery of zinc by solvent extraction. The final objective has been to achieve a solution as pure as possible to recover nickel sulphate.Estudou-se o desenvolvimento de um processo metalúrgico para a extracção de metais a partir de lamas galvânicas, passando por fases e extracção com solventes orgânico

    Leaching behaviour of a galvanic sludge in sulphuric acid and ammoniacal media

    Get PDF
    Leaching studies of a sludge produced by the physico-chemical treatment of astewaters generated by a Ni/Cr plating plant were carried out in both sulphuric acid and ammoniacal media aiming to decide which of them would be the best treatment for this kind of waste material. The dissolution behaviour of some metals (Cu, Ni, Cr and Zn) was studied in order to assure the best metal recovery conditions in subsequent processes by the use of some separation methods such as solvent extraction and precipitation techniques. Therefore, the study here presented deals with the first chemical stage of an integrated treatment process. For the sulphuric acid leaching, maximal conversions obtained were 88.6% Cu, 98.0% Ni and 99.2% Zn for the following experimental conditions: a 100 g L−1 acid concentration, a 5:1 liquid-to-solid ratio (L/S), a particle size less than 1 mm, a digestion time of 1 h, a stirring speed of 700 rpm (all at room temperature and under atmospheric pressure). As expected, no selectivity was achieved for the sulphuric acid leaching, despite this option yielding much higher metal ion dissolution when compared with that reached by ammoniacal leaching. The use of this latter medium allowed the extraction of Cu and Ni without Cr species, but rates of conversion were only about 70% for Cu and 50% for Ni, much lower than those obtained for sulphuric acid leaching

    Stopping power as a signature of dissipative processes in heavy-ion collisions

    Get PDF
    In heavy-ions collisions different observables have been studied in order to get an insight about dissipative processes taking place in the excited nuclear system. Among them, we can focus on the ratio between the transverse and longitudinal kinetic energy components, or stopping power RE. A substancial reduction of this quantity has been recently evidenced by the INDRA collaboration at incident energies between 32 and 100 A MeV, for various symmetric systems. In this work, the impact of σnn on the stoping power RE is studied in the framework of the microscopic DYWAN model. Calculations have been performed in Xe+Sn central collisions at incident energies between 45 and 100 A MeV, where the theoretical values are shown to be more sensitive to σnn. They are compared with experimental data and with the results of the semiclassical Landau-Vlasov model

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Analysis of charged particle emission sources and coalescence in E/A = 61 MeV 36^{36}Ar + 27^{27}Al, 112^{112}Sn and 124^{124}Sn collisions

    Full text link
    Single-particle kinetic energy spectra and two-particle small angle correlations of protons (pp), deuterons (dd) and tritons (tt) have been measured simultaneously in 61A MeV 36^{36}Ar + 27^{27}Al, 112^{112}Sn and 124^{124}Sn collisions. Characteristics of the emission sources have been derived from a ``source identification plot'' (βsource\beta_{source}--ECME_{CM} plot), constructed from the single-particle invariant spectra, and compared to the complementary results from two-particle correlation functions. Furthermore, the source identification plot has been used to determine the conditions when the coalescence mechanism can be applied for composite particles. In our data, this is the case only for the Ar + Al reaction, where pp, dd and tt are found to originate from a common source of emission (from the overlap region between target and projectile). In this case, the coalescence model parameter, p~0\tilde{p}_0 -- the radius of the complex particle emission source in momentum space, has been analyzed.Comment: 20 pages, 5 figures, submitted to Nuclear Physics
    corecore