48 research outputs found

    A systematic review of grandparents’ influence on grandchildren’s cancer risk factors

    Get PDF
    Many lifestyle patterns are established when children are young. Research has focused on the potential role of parents as a risk factor for non communicable disease in children, but there is limited investigation of the role of other caregivers, such as grandparents. The aim of this review was to identify and synthesise evidence for any influence grandparents’ care practices may have on their grandchildren’s long term cancer risk factors. A systematic review was carried out with searches across four databases (MEDLINE, Embase, Web of Science, PsycINFO) as well as searches of reference lists and citing articles, and Google Scholar. Search terms were based on six areas of risk that family care could potentially influence–weight, diet, physical activity, tobacco, alcohol and sun exposure. All study designs were included, as were studies that provided an indication of the interaction of grandparents with their grandchildren. Studies were excluded if grandparents were primary caregivers and if children had serious health conditions. Study quality was assessed using National Institute for Health and Care Excellence checklists. Grandparent impact was categorised as beneficial, adverse, mixed or as having no impact. Due to study heterogeneity a meta-analysis was not possible. Qualitative studies underwent a thematic synthesis of their results. Results from all included studies indicated that there was a sufficient evidence base for weight, diet, physical activity and tobacco studies to draw conclusions about grandparents’ influence. One study examined alcohol and no studies examined sun exposure. Evidence indicated that, overall, grandparents had an adverse impact on their grandchildren’s cancer risk factors. The theoretical work in the included studies was limited. Theoretically underpinned interventions designed to reduce these risk factors must consider grandparents’ role, as well as parents’, and be evaluated robustly to inform the evidence base further

    JARUCO (Cuba) (La Habana) (Fondeadero). Baterías (1851). Varias escalas

    No full text
    Presenta, por un lado, un plano de la desembocadura del río Jaruco, mostrando la localización de la batería, y, por otro, el plano de la planta y un perfil de esta fortificaciónAutor del original tomado del verso, donde figura, así mismo, el título y la fecha, todo ello escrito a lápiz"Conforme" del Coronel Comandante interino Carlos Benítez y del Coronel Director Subinspector interino Manuel ValdésManuscrito firmado y rubricado por el autor de la copiaEscala [ca. 1:2388], 240 varas castellanas [= 8'4 cm] para el croquis del río, [ca. 1:387], 50 varas castellanas [= 10'8 cm] para la planta de la batería y [ca. 1:206], 20 [varas castellanas] [= 8'1 cm] para el perfilOrientado con media lis el primero de ellosPlano de la Batería de Jaruc

    Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)

    No full text
    International audienceThe Wadi Dima area (Oman Ophiolite) exposes partially altered to highly serpentinized harzburgites that are cross-cut by intense (>20 Vol%) carbonate veining. We identified a sequence of 3 types of carbonate veins with compositions ranging from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates occur as a fine diffuse vein network, locally replacing olivine cores, penetrative into the serpentinized harzburgites. They have depleted trace elements abundances (e.g., Yb < 0.2 × C1-chondrite) relative to other Wadi Dima carbonates, exhibit negative Ce and positive Y, U anomalies and a broad range in δ13CV-PDB (-5 to -15‰) and δ18OSMOW (18 to 31‰). These compositions are consistent with precipitation after seawater-derived fluids and/or fluids in equilibrium with mantle rocks and serpentines during cooling of oceanic lithosphere (110 to 15°C). Type 2 carbonates are localized in veins, which acted as main flow paths for fluids interacting with peridotites in the exhumed Oman mantle lithosphere (50°C-10°C). The orientation of these veins is controlled by the crystallographic anisotropy of Oman mantle peridotites. Type 2 carbonates record two stages. The first involved the formation of large calcite crystals of composition similar to Type 1 carbonates (trace element depleted; δ13CV-PDB B = -4 to -9‰ and δ18OSMOW = 26 to 30‰), which during the second stage were recrystallized to form dolomite and calcite microcrystals (trace element enriched; δ13CV-PDB = -7 to -13‰ and δ18OSMOW = 29 to 32‰), after fluids sampling different sources including contributions of sediment-derived components. They were most likely formed at shallow depths and record the transition from oceanic to continental settings during late Cretaceous ophiolite obduction. Type 3 veins reactivate Type 2 veins. They comprise dominantly calcite and dolomite microcrystals (Light REE enriched patterns) with isotopic compositions (δ13CV-PDB B ~ -7 to -8‰; δ18OSMOW~ 28 to 32‰) consistent with precipitation at low temperatures (T°<30°C) from surface/meteoric fluids. Type 3 veining is probably triggered by ophiolite uplift during the Oligocene to early Miocene. Our study presents new insights into the role of the initial mantle anisotropy in the orientation of the vein network and of principal flow paths during serpentinization and carbonatization of mantle peridotites. It also highlights the highly variable carbon isotope composition of carbonates and suggest different origins for these heterogeneities: the carbon isotope composition of the early Type 1 carbonates dispersed in the poorly connected peridotites is locally modified by serpentinization reactions whilst the carbon isotope compositions of Type 2 and 3 carbonates record mixing of fluids from different sources in high flow veins

    Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman)

    No full text
    The Wadi Dima area (Oman Ophiolite) exposes partially altered to highly serpentinized harzburgites that are cross-cut by intense (>20 Vol%) carbonate veining. We identified a sequence of 3 types of carbonate veins with compositions ranging from calcite to dolomite (Mg/Ca = 0-0.85). Type 1 carbonates occur as a fine diffuse vein network, locally replacing olivine cores, penetrative into the serpentinized harzburgites. They have depleted trace elements abundances (e.g., Yb < 0.2 × C1-chondrite) relative to other Wadi Dima carbonates, exhibit negative Ce and positive Y, U anomalies and a broad range in δ13CV-PDB (-5 to -15‰) and δ18OSMOW (18 to 31‰). These compositions are consistent with precipitation after seawater-derived fluids and/or fluids in equilibrium with mantle rocks and serpentines during cooling of oceanic lithosphere (110 to 15°C). Type 2 carbonates are localized in veins, which acted as main flow paths for fluids interacting with peridotites in the exhumed Oman mantle lithosphere (50°C-10°C). The orientation of these veins is controlled by the crystallographic anisotropy of Oman mantle peridotites. Type 2 carbonates record two stages. The first involved the formation of large calcite crystals of composition similar to Type 1 carbonates (trace element depleted; δ13CV-PDB B = -4 to -9‰ and δ18OSMOW = 26 to 30‰), which during the second stage were recrystallized to form dolomite and calcite microcrystals (trace element enriched; δ13CV-PDB = -7 to -13‰ and δ18OSMOW = 29 to 32‰), after fluids sampling different sources including contributions of sediment-derived components. They were most likely formed at shallow depths and record the transition from oceanic to continental settings during late Cretaceous ophiolite obduction. Type 3 veins reactivate Type 2 veins. They comprise dominantly calcite and dolomite microcrystals (Light REE enriched patterns) with isotopic compositions (δ13CV-PDB B ~ -7 to -8‰; δ18OSMOW~ 28 to 32‰) consistent with precipitation at low temperatures (T°<30°C) from surface/meteoric fluids. Type 3 veining is probably triggered by ophiolite uplift during the Oligocene to early Miocene. Our study presents new insights into the role of the initial mantle anisotropy in the orientation of the vein network and of principal flow paths during serpentinization and carbonatization of mantle peridotites. It also highlights the highly variable carbon isotope composition of carbonates and suggest different origins for these heterogeneities: the carbon isotope composition of the early Type 1 carbonates dispersed in the poorly connected peridotites is locally modified by serpentinization reactions whilst the carbon isotope compositions of Type 2 and 3 carbonates record mixing of fluids from different sources in high flow veins.This study was funded by INSU CNRS Tellus project 2016 and Deep Carbon Observatory-Deep Energy community awarded by Alfred P. Sloan Foundation grant “In situ Oxygen and Carbone isotope in Oman Ophiolite basement: new insight of serpentinization, carbonatation and fluid circulation” (Sloan Subaward Number 2090 G UA721). High resolution X-ray microtomography images (ID19 beamline, ESRF, Grenoble, France) were acquired as part of ESRF Experiment ES-277. SE was supported by the People Programme (Marie Curie Actions) of the European Union's Seventh Framework ProgrammeFP7/ 2007-2013 under REA-Grant Agreement n608001
    corecore