124 research outputs found

    A stimulus to define informatics and health information technology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the growing interest by leaders, policy makers, and others, the terminology of health information technology as well as biomedical and health informatics is poorly understood and not even agreed upon by academics and professionals in the field.</p> <p>Discussion</p> <p>The paper, presented as a Debate to encourage further discussion and disagreement, provides definitions of the major terminology used in biomedical and health informatics and health information technology. For informatics, it focuses on the words that modify the term as well as individuals who practice the discipline. Other categories of related terms are covered as well, from the associated disciplines of computer science, information technolog and health information management to the major application categories of applications used. The discussion closes with a classification of individuals who work in the largest segment of the field, namely clinical informatics.</p> <p>Summary</p> <p>The goal of presenting in Debate format is to provide a starting point for discussion to reach a documented consensus on the definition and use of these terms.</p

    The Development of a Point of Care Clinical Guidelines Mobile Application Following a User-Centred Design Approach

    Get PDF
    This paper describes the development of a point of care clinical guidelines mobile application. A user-centred design approach was utilised to inform the design of a smartphone application, this included: Observations; a survey; focus groups and an analysis of popular apps utilised by clinicians in a UK NHS Trust. Usability testing was conducted to inform iterations of the application, which presents clinicians with a variety of integrated tools to aid in decision making and information retrieval. The study found that clinicians use a mixture of technology to retrieve information, which is often inefficient or has poor usability. It also shows that smartphone application development for use in UK hospitals needs to consider the variety of users and their clinical knowledge and work pattern. This study highlights the need for applying user-centred design methods in the design of information presented to clinicians and the need for clinical information delivery that is efficient and easy to use at the bedside

    GSK-3β is essential for physiological electric field-directed Golgi polarization and optimal electrotaxis

    Get PDF
    Endogenous electrical fields (EFs) at corneal and skin wounds send a powerful signal that directs cell migration during wound healing. This signal therefore may serve as a fundamental regulator directing cell polarization and migration. Very little is known of the intracellular and molecular mechanisms that mediate EF-induced cell polarization and migration. Here, we report that Chinese hamster ovary (CHO) cells show robust directional polarization and migration in a physiological EF (0.3–1 V/cm) in both dissociated cell culture and monolayer culture. An EF of 0.6 V/cm completely abolished cell migration into wounds in monolayer culture. An EF of higher strength (≥1 V/cm) is an overriding guidance cue for cell migration. Application of EF induced quick phosphorylation of glycogen synthase kinase 3β (GSK-3β) which reached a peak as early as 3 min in an EF. Inhibition of protein kinase C (PKC) significantly reduced EF-induced directedness of cell migration initially (in 1–2 h). Inhibition of GSK-3β completely abolished EF-induced GA polarization and significantly inhibited the directional cell migration, but at a later time (2–3 h in an EF). Those results suggest that GSK-3β is essential for physiological EF-induced Golgi apparatus (GA) polarization and optimal electrotactic cell migration

    Consumer input into research: the Australian Cancer Trials website

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Australian Cancer Trials website (ACTO) was publicly launched in 2010 to help people search for cancer clinical trials recruiting in Australia, provide information about clinical trials and assist with doctor-patient communication about trials. We describe consumer involvement in the design and development of ACTO and report our preliminary patient evaluation of the website.</p> <p>Methods</p> <p>Consumers, led by Cancer Voices NSW, provided the impetus to develop the website. Consumer representative groups were consulted by the research team during the design and development of ACTO which combines a search engine, trial details, general information about trial participation and question prompt lists. Website use was analysed. A patient evaluation questionnaire was completed at one hospital, one week after exposure to the website.</p> <p>Results</p> <p>ACTO's main features and content reflect consumer input. In February 2011, it covered 1, 042 cancer trials. Since ACTO's public launch in November 2010, until the end of February 2011, the website has had 2, 549 new visits and generated 17, 833 page views. In a sub-study of 47 patient users, 89% found the website helpful for learning about clinical trials and all respondents thought patients should have access to ACTO.</p> <p>Conclusions</p> <p>The development of ACTO is an example of consumers working with doctors, researchers and policy makers to improve the information available to people whose lives are affected by cancer and to help them participate in their treatment decisions, including consideration of clinical trial enrolment. Consumer input has ensured that the website is informative, targets consumer priorities and is user-friendly. ACTO serves as a model for other health conditions.</p

    Use of Electronic Health Records to Support a Public Health Response to the COVID-19 Pandemic in the United States: A Perspective from Fifteen Academic Medical Centers

    Get PDF
    Our goal is to summarize the collective experience of 15 organizations in dealing with uncoordinated efforts that result in unnecessary delays in understanding, predicting, preparing for, containing, and mitigating the COVID-19 pandemic in the US. Response efforts involve the collection and analysis of data corresponding to healthcare organizations, public health departments, socioeconomic indicators, as well as additional signals collected directly from individuals and communities. We focused on electronic health record (EHR) data, since EHRs can be leveraged and scaled to improve clinical care, research, and to inform public health decision-making. We outline the current challenges in the data ecosystem and the technology infrastructure that are relevant to COVID-19, as witnessed in our 15 institutions. The infrastructure includes registries and clinical data networks to support population-level analyses. We propose a specific set of strategic next steps to increase interoperability, overall organization, and efficiencie

    Involvment of Cytosolic and Mitochondrial GSK-3β in Mitochondrial Dysfunction and Neuronal Cell Death of MPTP/MPP+-Treated Neurons

    Get PDF
    Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD). 1-methyl-4-phenylpyridinium iodide (MPP+), the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3β (GSK-3β), a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3β in modulating MPP+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3β, evidenced by the increased level of the active form of the kinase, i.e. GSK-3β phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3β partially localized within mitochondria in both neuronal cell models. Moreover, MPP+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3β labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3β activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3β is a critical mediator of MPTP/MPP+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3β activity might provide protection against mitochondrial stress-induced cell death

    Biomedical informatics and translational medicine

    Get PDF
    Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics) may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records) and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians") can be essential members of translational medicine teams

    Regulation of GSK-3 Activity as A Shared Mechanism in Psychiatric Disorders

    Full text link
    Serin/Treonin kinaz ailesinin üyelerinden bir kinaz olarak ilk kez glikojen sentaz’ı inhibe ettiği keşfedilen glikojen sentaz kinaz-3 (GSK-3), günümüzde bilinen 50’den fazla substratı ile birçok hücre içi düzenleyici mekanizmada görev alan geniş etki spektrumlu bir enzim olarak kabul edilmektedir. GSK-3’ün memelilerde GSK-3α ve GSK-3β olmak üzere yapısal olarak yüksek homoloji gösteren iki izoformu bulunmaktadır. Her iki izoform birçok dokuda yaygın dağılım göstermekle beraber, en yüksek oranda beyinde bulunmakta ve genellikle benzer fonksiyonlar göstermektedirler. Diğer protein kinazların aksine GSK-3 uyarılmamış hücrede yapısal olarak aktif yani defosforile halde bulur. Protein kinaz A (PKA), protein kinaz B (PKB;AKT) ve protein kinaz C (PKC) gibi diğer protein kinazlarla fosforilasyona uğrayarak olarak inaktive edilir. Günümüzde artmış GSK-3 aktivitesinin major depresyon, bipolar bozukluk, hiperaktivite bozuklukları gibi hastalıklar ve şizofreni oluşumunda rol oynayabileceğine ilişkin önemli bulgular mevcuttur. Bu nedenle söz konusu psikiyatrik hastalıklarda arttığı gösterilen GSK-3 aktivitesinin azaltılmasının tedavide umut verici bir yaklaşım olabileceği kabul edilebilir. Bu gözden geçirme çalışmasında yukarıda sözü edilen psikiyatrik hastalıkların oluşmasında görev alan GSK-3 aracılı mekanizmalara kısaca değinilerek GSK-3’ün aktivitesinin düzenlenmesinde rol oynadığı gösterilen klinikte kullanılan ilaçlara yer verilmiştir. Anahtar sözcükler: GSK-3, depresyon, bipolar bozukluk, şizofren

    Multifaceted roles of GSK-3 and Wnt/β-catenin in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention

    Get PDF
    Glycogen synthase kinase-3 (GSK-3) is well documented to participate in a complex array of critical cellular processes. It was initially identified in rat skeletal muscle as a serine/threonine kinase that phosphorylated and inactivated glycogen synthase. This versatile protein is involved in numerous signaling pathways that influence metabolism, embryogenesis, differentiation, migration, cell cycle progression and survival. Recently, GSK-3 has been implicated in leukemia stem cell pathophysiology and may be an appropriate target for its eradication. In this review, we will discuss the roles that GSK-3 plays in hematopoiesis and leukemogenesis as how this pivotal kinase can interact with multiple signaling pathways such as: Wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/Akt/mammalian target of rapamycin (mTOR), Ras/Raf/MEK/extracellular signal-regulated kinase (ERK), Notch and others. Moreover, we will discuss how targeting GSK-3 and these other pathways can improve leukemia therapy and may overcome therapeutic resistance. In summary, GSK-3 is a crucial regulatory kinase interacting with multiple pathways to control various physiological processes, as well as leukemia stem cells, leukemia progression and therapeutic resistance. GSK-3 and Wnt are clearly intriguing therapeutic targets
    corecore