2,746 research outputs found

    Description of Langley low-frequency noise facility and study of human response to noise frequencies below 50 cps

    Get PDF
    Test facility for determining human performance in very low frequency noise environment - physiological and psychological response

    Response-to-noise studies of some aircraft and spacecraft structures

    Get PDF
    Fatigue and response to noise of aircraft and spacecraft viscoelastic panels, shell structure, and payload

    Description and research capabilities of the Langley Low Frequency Noise Facility

    Get PDF
    Description and research capabilities of low frequency noise facilit

    Mapping the cold molecular gas in a cooling flow cluster: Abell 1795

    Full text link
    Cold molecular gas is found in several clusters of galaxies (Edge, 2001, Salome' & Combes, 2003): single dish telescope observations in CO(1-0) and CO(2-1) emission lines have revealed the existence of large amounts of cold gas (up to ~10^11 Msol) in the central region of cooling flow clusters. We present here interferometric observations performed with the IRAM Plateau de Bure interferometer in Abell 1795. Comparison with IRAM 30m data shows the cold gas detected is extended suggesting a cooling flow origin. The CO features identified are very similar to the structures observed in Halpha and with the star forming regions observed through UV continuum excess. A large fraction of the cold gas is not centered on the central cD, but located near brightest X-ray emitting regions along the North-West orientated radio lobe. The cold gas kinematics is consistent with the optical nebulosity behaviour in the very central region. It is not in rotation around the central cD : a velocity gradient shows the cold gas might be cooled gas from the intra-cluster medium being accreted by the central galaxy. The optical filaments, aligned with the cD orbit, are intimately related to the radio jets and lobes. The material fueling the star formation certainly comes from the deposited gas, cooling more efficiently along the edge of the radio lobes. Even if some heating mechanisms are present, these millimetric observations show that an effective cooling to very low temperatures indeed occurs and is probably accelerated by the presence of the radio source.Comment: 4 pages, 4 figures, accepted for publication in A&A (Letter

    Normalizing the Temperature Function of Clusters of Galaxies

    Full text link
    We re-examine the constraints which can be robustly obtained from the observed temperature function of X-ray cluster of galaxies. The cluster mass function has been thoroughly studied in simulations and analytically, but a direct simulation of the temperature function is presented here for the first time. Adaptive hydrodynamic simulations using the cosmological Moving Mesh Hydro code of Pen (1997a) are used to calibrate the temperature function for different popular cosmologies. Applying the new normalizations to the present-day cluster abundances, we find σ8=0.53±0.05Ω00.45\sigma_8=0.53\pm 0.05 \Omega_0^{-0.45} for a hyperbolic universe, and σ8=0.53±0.05Ω00.53\sigma_8=0.53\pm 0.05 \Omega_0^{-0.53} for a spatially flat universe with a cosmological constant. The simulations followed the gravitational shock heating of the gas and dark matter, and used a crude model for potential energy injection by supernova heating. The error bars are dominated by uncertainties in the heating/cooling models. We present fitting formulae for the mass-temperature conversions and cluster abundances based on these simulations.Comment: 20 pages incl 5 figures, final version for ApJ, corrected open universe \gamma relation, results unchange

    Non-hydrostatic gas in the core of the relaxed galaxy cluster A1795

    Full text link
    Chandra data on A1795 reveal a mild edge-shaped discontinuity in the gas density and temperature in the southern sector of the cluster at r=60/h kpc. The gas inside the edge is 1.3-1.5 times denser and cooler than outside, while the pressure is continuous, indicating that this is a "cold front", the surface of contact between two moving gases. The continuity of the pressure indicates that the current relative velocity of the gases is near zero, making the edge appear to be in hydrostatic equilibrium. However, a total mass profile derived from the data in this sector under the equilibrium assumption, exhibits an unphysical jump by a factor of 2, with the mass inside the edge being lower. We propose that the cooler gas is "sloshing" in the cluster gravitational potential well and is now near the point of maximum displacement, where it has zero velocity but nonzero centripetal acceleration. The distribution of this non-hydrostatic gas should reflect the reduced gravity force in the accelerating reference frame, resulting in the apparent mass discontinuity. Assuming that the gas outside the edge is hydrostatic, the acceleration of the moving gas can be estimated from the mass jump, a ~ 800 h km/s/(10^8 yr). The gravitational potential energy of this gas that is available for dissipation is about half of its current thermal energy. The length of the cool filament extending from the cD galaxy (Fabian et al.) may give the amplitude of the gas sloshing, 30-40/h kpc. Such gas bulk motion might be caused by a disturbance of the central gravitational potential by past subcluster infall.Comment: Minor text clarifications to correspond to published version. 5 pages, 1 figure in color, uses emulateapj.sty. ApJ Letters in pres

    Discovery of the Central Excess Brightness in Hard X-rays in the Cluster of Galaxies Abell 1795

    Get PDF
    Using the X-ray data from \ASCA, spectral and spatial properties of the intra-cluster medium (ICM) of the cD cluster Abell 1795 are studied, up to a radial distance of 12\sim 12' (1.3\sim 1.3 h501h_{50}^{-1} kpc). The ICM temperature and abundance are spatially rather constant, although the cool emission component is reconfirmed in the central region. The azimuthally- averaged radial X-ray surface brightness profiles are very similar between soft (0.7--3 keV) and hard (3--10 keV) energy bands, and neither can be fitted with a single-β\beta model due to a strong data excess within 5\sim5' of the cluster center. In contrast, double-β\beta models can successfully reproduce the overall brightness profiles both in the soft and hard energy bands, as well as that derived with the \ROSAT PSPC. Properties of the central excess brightness are very similar over the 0.2--10 keV energy range spanned by \ROSAT and \ASCA. Thus, the excess X-ray emission from the core region of this cluster is confirmed for the first time in hard X-rays above 3 keV. This indicates that the shape of the gravitational potential becomes deeper than the King-type one towards the cluster center. Radial profiles of the total gravitating matter, calculated using the double-β\beta model, reveal an excess mass of 3×1013 M\sim 3 \times 10^{13}~ M_{\odot} within 150h501\sim 150 h^{-1}_{50} kpc of the cluster center. This suggests a hierarchy in the gravitational potential corresponding to the cD galaxy and the entire cluster.Comment: 27 pages, 8 figures; to appear ApJ 500 (June 20, 1998

    A Chandra Study of the Complex Structure in the Core of 2A 0335+096

    Get PDF
    We present a Chandra observation of the central (r 40 kpc), the X-ray surface brightness is symmetric and slightly elliptical. The cluster has a cool, dense core; the radial temperature gradient varies with position angle. The radial metallicity profile shows a pronounced central drop and an off-center peak. Similarly to many clusters with dense cores, 2A 0335+096 hosts a cold front at r ≈ 40 kpc south of the center. The gas pressure across the front is discontinuous by a factor AP = 1.6 ± 0.3, indicating that the cool core is moving with respect to the ambient gas with a Mach number M ≈ 0.75 ± 0.2. The central dense region inside the cold front shows an unusual X-ray morphology, which consists of a number of X-ray blobs and/or filaments on scales 3 kpc, along with two prominent X-ray cavities. The X-ray blobs are not correlated with either the optical line emission (Hα+[N II]), member galaxies, or radio emission. The deprojected temperature of the dense blobs is consistent with that of the less dense ambient gas, so these gas phases do not appear to be in thermal pressure equilibrium. An interesting possibility is a significant, unseen nonthermal pressure component in the interblob gas, possibly arising from the activity of the central active galactic nucleus (AGN). We discuss two models for the origin of the gas blobs—hydrodynamic instabilities caused by the observed motion of the gas core and "bubbling" of the core caused by multiple outbursts of the central AGN

    A Very Hot, High Redshift Cluster of Galaxies: More Trouble for Omega_0 = 1

    Full text link
    We have observed the most distant (z=0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey, with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3 +3.1/-2.2 keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass ~ 7.4 x 10^14 h^-1 solar masses, if the mean matter density in the universe equals the critical value, or larger if Omega_0 < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an Omega_0 = 1 universe. Combining the assumptions that Omega_0 = 1 and that the intial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that the probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10^{-5}. Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z>0.5z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and Omega_0 = 1, we find that each one is improbable at the < 10^{-2} level. These observations, along with the fact that these luminosities and temperatures of the high-zz clusters all agree with the low-z L_X-T_X relation, argue strongly that Omega_0 < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.Comment: 20 pages, 4 figures, To appear in 1 Aug 1998 ApJ (heavily revised version of original preprint
    corecore