896 research outputs found

    Design and test of a prototype scale ejector wing

    Get PDF
    A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65

    Synopsis of biological data on the pink shrimp, Pandalus borealis Kroyer, 1838

    Get PDF
    This synopsis of the literature was designed to summarize the biological and biochemical studies involving Pandalus borealis as well as to provide a summary of the literature regarding the fisheries data published before early 1984. Included are many unpublished observations, drawn from studies at the State of Maine Department of Marine Resources Laboratory in West Boothbay Harbor, Maine. (PDF file contains 63 pages.

    The infrared spectra of spiropentane methylenecyclobutane and 2-methyl-1-butene

    Get PDF
    The infrared spectra of spiropentane, methylenecyclobutane, and 2-methyl-1-butene were measured in the region from 3 to 14 microns with a rock salt prism spectrometer of medium dispersion. The pure samples were prepared at the NACA Cleveland Laboratory. The vapors of these three C5 hydrocarbons were investigated at room temperature and at pressures in the range from 80 to 300 millimeters of mercury absolute in a 10-centimeter cell. The spectra were compared with each other and with Ramon spectra for the same compounds

    Adlayer core-level shifts of random metal overlayers on transition-metal substrates

    Get PDF
    We calculate the difference of the ionization energies of a core-electron of a surface alloy, i.e., a B-atom in a A_(1-x) B_x overlayer on a fcc-B(001)-substrate, and a core-electron of the clean fcc-B(001) surface using density-functional-theory. We analyze the initial-state contributions and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Data are presented for Cu_(1-x)Pd_x/Pd(001), Ag_(1-x) Pd_x/Pd(001), Pd_(1-x) Cu_x/Cu(001), and Pd_(1-x) Ag_x/Ag(001), changing x from 0 to 100 %. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed.Comment: 4 pages, 2 figures, Phys. Rev. Letters, to appear in Feb. 199

    A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags

    Get PDF
    Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year

    Structure and Magnetism of well-defined cobalt nanoparticles embedded in a niobium matrix

    Full text link
    Our recent studies on Co-clusters embedded in various matrices reveal that the co-deposition technique (simultaneous deposition of two beams : one for the pre-formed clusters and one for the matrix atoms) is a powerful tool to prepare magnetic nanostructures with any couple of materials even though they are miscible. We study, both sharply related, structure and magnetism of the Co/Nb system. Because such a heterogeneous system needs to be described at different scales, we used microscopic and macroscopic techniques but also local selective absorption ones. We conclude that our clusters are 3 nm diameter f.c.c truncated octahedrons with a pure cobalt core and a solid solution between Co and Nb located at the interface which could be responsible for the magnetically inactive monolayers we found. The use of a very diluted Co/Nb film, further lithographed, would allow us to achieve a pattern of microsquid devices in view to study the magnetic dynamics of a single-Co cluster.Comment: 7 TeX pages, 9 Postscript figures, detailed heading adde

    Contribution of common and rare variants to bipolar disorder susceptibility in extended pedigrees from population isolates.

    Get PDF
    Current evidence from case/control studies indicates that genetic risk for psychiatric disorders derives primarily from numerous common variants, each with a small phenotypic impact. The literature describing apparent segregation of bipolar disorder (BP) in numerous multigenerational pedigrees suggests that, in such families, large-effect inherited variants might play a greater role. To identify roles of rare and common variants on BP, we conducted genetic analyses in 26 Colombia and Costa Rica pedigrees ascertained for bipolar disorder 1 (BP1), the most severe and heritable form of BP. In these pedigrees, we performed microarray SNP genotyping of 838 individuals and high-coverage whole-genome sequencing of 449 individuals. We compared polygenic risk scores (PRS), estimated using the latest BP1 genome-wide association study (GWAS) summary statistics, between BP1 individuals and related controls. We also evaluated whether BP1 individuals had a higher burden of rare deleterious single-nucleotide variants (SNVs) and rare copy number variants (CNVs) in a set of genes related to BP1. We found that compared with unaffected relatives, BP1 individuals had higher PRS estimated from BP1 GWAS statistics (P = 0.001 ~ 0.007) and displayed modest increase in burdens of rare deleterious SNVs (P = 0.047) and rare CNVs (P = 0.002 ~ 0.033) in genes related to BP1. We did not observe rare variants segregating in the pedigrees. These results suggest that small-to-moderate effect rare and common variants are more likely to contribute to BP1 risk in these extended pedigrees than a few large-effect rare variants

    Embodying compassion: A virtual reality paradigm for overcoming excessive self-criticism

    Get PDF
    Virtual reality has been successfully used to study and treat psychological disorders such as phobias and posttraumatic stress disorder but has rarely been applied to clinically-relevant emotions other than fear and anxiety. Self-criticism is a ubiquitous feature of psychopathology and can be treated by increasing levels of self-compassion. We exploited the known effects of identification with a virtual body to arrange for healthy female volunteers high in self-criticism to experience self-compassion from an embodied first-person perspective within immersive virtual reality. Whereas observation and practice of compassionate responses reduced self-criticism, the additional experience of embodiment also increased self-compassion and feelings of being safe. The results suggest potential new uses for immersive virtual reality in a range of clinical conditions.N/
    corecore