1,164 research outputs found

    Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves

    Get PDF
    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities >~ 200 km/s for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ~2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ~3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ~2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.Comment: 30 pages, 8 figures, accepted for publication in the Astrophysical Journa

    Analytical Approximations for Calculating the Escape and Absorption of Radiation in Clumpy Dusty Environments

    Get PDF
    We present analytical approximations for calculating the scattering, absorption and escape of nonionizing photons from a spherically symmetric two-phase clumpy medium, with either a central point source of isotropic radiation, a uniform distribution of isotropic emitters, or uniformly illuminated by external sources. The analytical approximations are based on the mega-grains model of two-phase clumpy media, as proposed by Hobson & Padman, combined with escape and absorption probability formulae for homogeneous media. The accuracy of the approximations is examined by comparison with 3D Monte Carlo simulations of radiative transfer, including multiple scattering. Our studies show that the combined mega-grains and escape/absorption probability formulae provide a good approximation of the escaping and absorbed radiation fractions for a wide range of parameters characterizing the medium. A realistic test is performed by modeling the absorption of a starlike source of radiation by interstellar dust in a clumpy medium, and by calculating the resulting equilibrium dust temperatures and infrared emission spectrum of both the clumps and the interclump medium. In particular, we find that the temperature of dust in clumps is lower than in the interclump medium if clumps are optically thick. Comparison with Monte Carlo simulations of radiative transfer in the same environment shows that the analytic model yields a good approximation of dust temperatures and the emerging UV to FIR spectrum of radiation for all three types of source distributions mentioned above. Our analytical model provides a numerically expedient way to estimate radiative transfer in a variety of interstellar conditions and can be applied to a wide range of astrophysical environments, from star forming regions to starburst galaxies.Comment: 55 pages, 27 figures. ApJ 523 (1999), in press. Corrected equations and text so as to be same as ApJ versio

    The Near Infrared Background: Interplanetary Dust or Primordial Stars?

    Full text link
    The intensity of the diffuse ~ 1 - 4 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval (Arendt & Dwek 2003, Matsumoto et al. 2005). The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from HII regions formed by the first generation of very massive stars. In this paper we analyze the implications of this spectral component for the formation rate of these Population III stars, the redshift interval during which they formed, the reionization of the universe and evolution of collapsed halo masses. We find that to reproduce the intensity and spectral shape of the NIRBL requires a peak star formation rate that is higher by about a factor of 4 to 10 compared to those derived from hierarchical models. Furthermore, an extragalactic origin for the NIRBL leads to physically unrealistic absorption-corrected spectra of distant TeV blazars. All these results suggest that Pop III stars contribute only a fraction of the NIRBL intensity with zodiacal light, star forming galaxies, and/or non-nuclear sources giving rise to the remaining fraction.Comment: 28 pages including 7 embedded figures. Submitted to Ap

    The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251

    Full text link
    Dusty hyperluminous galaxies in the early universe provide unique environments for studying the role of massive stars in the formation and destruction of dust. At redshifts above ~ 6, when the universe was less than ~ 1 Gyr old, dust could have only condensed in the explosive ejecta of Type II supernovae (SNe), since most of the progenitors of the AGB stars, the major alternative source of interstellar dust, did not have time to evolve off the main sequence since the onset of star formation. In this paper we present analytical models for the evolution of the gas, dust, and metals in high redshift galaxies, with a special application to SDSS J1148+5251, a hyperluminous quasar at z = 6.4. We find that an average supernova must condense at least 1 Msun of dust to account for the observed dust mass in this quasar. Observationally, it is in excess of the largest dust yield of ~0.02 Msun found thus far in the ejecta of any SN. If future observations find this to be a typical supernova dust yield, then additional processes, such as accretion onto preexisting grains, or condensation around the AGN will need to be invoked to account for the large amount of dust in this and similar objects. The galaxy's star formation history is still uncertain, and current observations of the gas, metal, and dust contents of J1148 can be reproduced by either an intensive and short burst of star formation (~ 1000 Msun/yr) with a duration of ~ 100 Myr, or a much lower star formation rate (~ 100 Msun/yr) occurring over the lifetime of the galaxy.Comment: 35 pages, 11 figures, accepted for publication in the Astrophysical Journa

    On the source of the late-time infrared luminosity of SN 1998S and other type II supernovae

    Full text link
    We present late-time near-infrared (NIR) and optical observations of the type IIn SN 1998S. The NIR photometry spans 333-1242 days after explosion, while the NIR and optical spectra cover 333-1191 days and 305-1093 days respectively. The NIR photometry extends to the M'-band (4.7 mu), making SN 1998S only the second ever supernova for which such a long IR wavelength has been detected. The shape and evolution of the H alpha and HeI 1.083 mu line profiles indicate a powerful interaction with a progenitor wind, as well as providing evidence of dust condensation within the ejecta. The latest optical spectrum suggests that the wind had been flowing for at least 430 years. The intensity and rise of the HK continuum towards longer wavelengths together with the relatively bright L' and M' magnitudes shows that the NIR emission was due to hot dust newly-formed in supernovae may provide the ejecta and/or pre-existing dust in the progenitor circumstellar medium (CSM). [ABRIDGED] Possible origins for the NIR emission are considered. Significant radioactive heating of ejecta dust is ruled out, as is shock/X-ray-precursor heating of CSM dust. More plausible sources are (a) an IR-echo from CSM dust driven by the UV/optical peak luminosity, and (b) emission from newly-condensed dust which formed within a cool, dense shell produced by the ejecta shock/CSM interaction. We argue that the evidence favours the condensing dust hypothesis, although an IR-echo is not ruled out. Within the condensing-dust scenario, the IR luminosity indicates the presence of at least 0.001 solar masses of dust in the ejecta, and probably considerably more. Finally, we show that the late-time intrinsic (K-L') evolution of type II supernovae may provide a useful tool for determining the presence or absence of a massive CSM around their progenitor stars.Comment: 23 pages, 15 figures, to be published in MNRA

    SPITZER observations of dust destruction in the Puppis A supernova remnant

    Get PDF
    The interaction of the Puppis A supernova remnant (SNR) with a neighboring molecular cloud provides a unique opportunity to measure the amount of grain destruction in an SNR shock. Spitzer Space Telescope MIPS imaging of the entire SNR at 24, 70, and 160 μm shows an extremely good correlation with X-ray emission, indicating that the SNR’s IR radiation is dominated by the thermal emission of swept-up interstellar dust, collisionally heated by the hot shocked gas. Spitzer IRS spectral observations targeted both the Bright Eastern Knot (BEK) of the SNR where a small cloud has been engulfed by the supernova blast wave and outlying portions of the associated molecular cloud that are yet to be hit by the shock front. Modeling the spectra from both regions reveals the composition and the grain size distribution of the interstellar dust, both in front of and behind the SNR shock front. The comparison shows that the ubiquitous polycyclic aromatic hydrocarbons of the interstellar medium are destroyed within the BEK, along with nearly 25% of the mass of graphite and silicate dust grains

    The Detection of Cold Dust in Cas A: Evidence for the Formation of Metallic Needles in the Ejecta

    Full text link
    Recently, Dunne et al. (2003) obtained 450 and 850 micron SCUBA images of CasA, and reported the detection of 2-4 M_sun of cold, 18K, dust in the remnant. Here we show that their interpretation of the observations faces serious difficulties. Their inferred dust mass is larger than the mass of refractory material in the ejecta of a 10 to 30 M_sun star. The cold dust model faces even more difficulties if the 170 micron observations of the remnant are included in the analysis, decreasing the cold dust temperature to ~ 8K, and increasing its mass to > 20 M_sun. We offer here a more plausible interpretation of their observation, in which the cold dust emission is generated by conducting needles with properties that are completely determined by the combined submillimeter and X-ray observations of the remnant. The needles consist of metallic whiskers with <1% of embedded impurities that may have condensed out of blobs of material that were expelled at high velocities from the inner metal-rich layers of the star in an asymmetric explosion. The needles are collisionally heated by the shocked gas to a temperature of 8K. Taking the destruction of needles into account, a dust mass of only 1E-4 to 1E-3M_sun is needed to account for the observed SCUBA emission. Aligned in the magnetic field, needles may give rise to observable polarized emission. The detection of submillimeter polarization will therefore offer definitive proof for a needle origin for the cold dust emission. Supernovae may still be proven to be important sources of interstellar dust, but the evidence is still inconclusive.Comment: 18 pages including 4 figures. Accepted for publication in the ApJ. Missing reference adde

    An Empirical Decomposition of Near-IR Emission into Galactic and Extragalactic Components

    Get PDF
    We decompose the COBE/DIRBE observations of the near-IR sky brightness (minus zodiacal light) into Galactic stellar and interstellar medium (ISM) components and an extragalactic background. This empirical procedure allows us to estimate the 4.9 micron cosmic infrared background (CIB) as a function of the CIB intensity at shorter wavelengths. A weak indication of a rising CIB intensity at wavelengths > 3.5 micron hints at interesting astrophysics in the CIB spectrum, or warns that the foreground zodiacal emission may be incompletely subtracted. Subtraction of only the stellar component from the zodiacal-light-subtracted all-sky map reveals the clearest 3.5 micron ISM emission map, which is found to be tightly correlated with the ISM emission at far-IR wavelengths.Comment: 10 pages. 10 JPEG and PNG figures. Uses emulateapj5.sty. To appear in 2003, ApJ, 585, 000 (March 1, 2003

    Chandra observations of SN 1987A: the soft X-ray light curve revisited

    Get PDF
    We report on the present stage of SN 1987A as observed by the Chandra X-ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by ~6 x 10 ^-13 erg s^-1 cm^-2 per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.Comment: Accepted for publication by ApJ, 7 pages, 5 figure
    • …
    corecore