68 research outputs found

    A strained silicon cold electron bolometer using Schottky contacts

    Get PDF
    We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10−16 W Hz−1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz−1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz−1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise

    Effect of an electric field on superfluid helium scintillation produced by alpha-particle sources

    Full text link
    We report a study of the intensity and time dependence of scintillation produced by weak alpha particle sources in superfluid helium in the presence of an electric field (0 - 45 kV/cm) in the temperature range of 0.2 K to 1.1 K at the saturated vapor pressure. Both the prompt and the delayed components of the scintillation exhibit a reduction in intensity with the application of an electric field. The reduction in the intensity of the prompt component is well approximated by a linear dependence on the electric field strength with a reduction of 15% at 45 kV/cm. When analyzed using the Kramers theory of columnar recombination, this electric field dependence leads to the conclusion that roughly 40% of the scintillation results from species formed from atoms originally promoted to excited states and 60% from excimers created by ionization and subsequent recombination with the charges initially having a cylindrical Gaussian distribution about the alpha track of 60 nm radius. The intensity of the delayed component of the scintillation has a stronger dependence on the electric field strength and on temperature. The implications of these data on the mechanisms affecting scintillation in liquid helium are discussed.Comment: 17 pages, 23 figure

    Use of QuEChERS as a manual and automated high-throughput protocol for investigating environmental matrices

    Get PDF
    Environmental pollution has strong links to adverse human health outcomes with risks of pollution through production, use, ineffective wastewater (WW) remediation, and/or leachate from landfill. 'Fit-for-purpose' monitoring approaches are critical for better pollution control and mitigation of harm, with current sample preparation methods for complex environmental matrices typically time-consuming and labour intensive, unsuitable for high-throughput screening. This study has shown that a modified 'Quick Easy Cheap Effective Rugged and Safe' (QuEChERS) sample preparation is a viable alternative for selected environmental matrices required for pollution monitoring (e.g. WW effluent, treated sludge cake and homogenised biota tissue). As a manual approach, reduced extraction times (hours to ∼20 min/sample) with largely reproducible (albeit lower) recoveries of a range of pharmaceuticals and biocidal surfactants have been reported. Its application has shown clear differentiation of matrices via chemometrics, and the measurement of pollutants of interest to the UK WW industry at concentrations significantly above suggested instrument detection limits (IDL) for sludge, indicating insufficient removal and/or bioaccumulation during WW treatment. Furthermore, new pollutant candidates of emerging concern were identified - these included detergents, polymers and pharmaceuticals, with quaternary ammonium compound (QAC) biocides observed at 2.3-70.4 mg/kg, and above levels associated with priority substances for environmental quality regulation (EQSD). Finally, the QuEChERS protocol was adapted to function as a fully automated workflow, further reducing the resource to complete both the preparation and analysis to 62%), and when applied to a largely un-investigated clay matrix, acceptable recovery (88.0-131.1%) and precision (≤10.3% RSD) for the tested pharmaceuticals and biocides was maintained. Therefore, this preliminary study has shown the successful application of a high-throughput QuEChERS protocol across a range of environmental solids for potential deployment in a regulated laboratory
    corecore