1,392 research outputs found

    Effect of exchange interaction on superparamagnetic relaxation

    Full text link
    We use Langer's approach to calculate the reaction rate of a system of two (classical) spins interacting via the exchange coupling JJ in a magnetic field HH, with uniaxial anisotropy of constant KK. We find a particular value of the exchange coupling, that is jJ/K=jc1h2j\equiv J/K = j_c\equiv 1-h^2, where hH/2Kh\equiv H/2K, which separates two regimes corresponding to a two-stage and one-stage switching. For jjcj\gg j_c the N\'eel-Brown result for the one-spin problem is recovered.Comment: 7 pages, 2 eps figures, fig.1 of better quality can be provided upon reques

    Spin glass like transition in a highly concentrated Fe-C nanoparticle system

    Full text link
    A highly concentrated (17 vol.%) Fe-C nano-particle system, with a narrow size distribution d=5.4±0.4d = 5.4\pm 0.4 nm, has been investigated using magnetic ac susceptibility measurements covering a wide range of frequencies (17 mHz - 170 Hz). A dynamic scaling analysis gives evidence for a phase transition to a low temperature spin-glass-like phase. The critical exponents associated with the transition are zν=10.5±2z\nu = 10.5 \pm 2 and β=1.1±0.2\beta = 1.1 \pm 0.2. The reason why the scaling analysis works for this sample, while it may not work for other samples exhibiting collective behavior as evidenced by aging phenomena, is that the single particle contribution to χ\chi'' is vanishingly small for T>TgT>T_g and hence all slow dynamics is due to collective behavior. This criterion can only be fulfilled for a highly concentrated nano-particle sample with a narrow size distribution.Comment: 2 pages, 3 figures, Proceeding for ICM200

    Geometric Aspects of the Dipolar Interaction in Lattices of Small Particles

    Full text link
    The hysteresis curves of systems composed of small interacting magnetic particles, regularly placed on stacked layers, are obtained with Monte Carlo simulations. The remanence as a function of temperature, in interacting systems, presents a peak that separates two different magnetic states. At low temperatures, small values of remanence are a consequence of antiferromagnetic order due to the dipolar interaction. At higher values of temperature the increase of the component normal to the lattice plane is responsible for the small values of remanence. The effect of the number of layers, coordination number and distance between particles are investigated.Comment: 5 pages, 7 figure

    Role of dipolar interactions in a system of Ni nanoparticles studied by magnetic susceptibility measurements

    Get PDF
    The role of dipolar interactions among Ni nanoparticles (NP) embedded in an amorphous SiO2/C matrix with different concentrations has been studied performing ac magnetic susceptibility Chi_ac measurements. For very diluted samples, with Ni concentrations < 4 wt % Ni or very weak dipolar interactions, the data are well described by the Neel-Arrhenius law. Increasing Ni concentration to values up to 12.8 wt % Ni results in changes in the Neel-Arrhenius behavior, the dipolar interactions become important, and need to be considered to describe the magnetic response of the NPs system. We have found no evidence of a spin-glasslike behavior in our Ni NP systems even when dipolar interactions are clearly present.Comment: 7 pages, 5 figures, 3 table

    Within-day dynamics of plant–pollinator networks are dominated by early flower closure: an experimental test of network plasticity

    Get PDF
    Temporal variability of plant–pollinator interactions is important for fully understanding the structure, function, and stability of plant–pollinator networks, but most network studies so far have ignored within-day dynamics. Strong diel dynamics (e.g., a regular daily cycle) were found for networks with Cichorieae, which typically close their flowers around noon. Here, we experimentally prevented early flower closure to test whether these dynamics are driven by the temporally limited availability of Cichorieae, or by timing of pollinator activity. We further tested if the dynamics involving Cichorieae and their pollinators also affect the dynamics on other plants in the network. Finally, we explored the structure of such manipulated networks (with Cichorieae available in the morning and afternoon) compared to unmanipulated controls (Cichorieae available only in the morning). We found that flower closure of Cichorieae is indeed an important driver of diel network dynamics, while other drivers of pollinator timing appeared less important. If Cichorieae flowers were available in the afternoon, they were visited by generalist and specialist pollinators, which overall decreased link turnover between morning and afternoon. Effects of afternoon availability of Cichorieae on other plants in the network were inconclusive: pollinator switching to and from Cichorieae tended to increase. On the level of the aggregated (full-day) network, the treatment resulted in increased dominance of Cichorieae, reducing modularity and increasing plant generality. These results highlight that network dynamics can be predicted by knowledge of diel or seasonal phenology, and that fixed species timing assumptions will misrepresent the expected dynamics.Fil: Schwarz, Benjamin. Albert Ludwigs University of Freiburg; AlemaniaFil: Dormann, Carsten F.. Albert Ludwigs University of Freiburg; AlemaniaFil: Vazquez, Diego P.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Fründ, Jochen. Albert Ludwigs University of Freiburg; Alemani

    Micro-SQUID technique for studying the temperature dependence of switching fields of single nanoparticles

    Full text link
    An improved micro-SQUID technique is presented allowing us to measure the temperature dependence of the magnetisation switching fields of single nanoparticles well above the critical superconducting temperature of the SQUID. Our first measurements on 3 nm cobalt nanoparticle embedded in a niobium matrix are compared to the Neel Brown model describing the magnetisation reversal by thermal activation over a single anisotropy barrier.Comment: 3 pages, 4 figures; conference proceeding: 1st Joint European Magnetic Symposia (JEMS'01), Grenoble (France), 28th August - 1st September, 200

    ESR of MnO embedded in silica nanoporous matrices with different topologies

    Full text link
    Electron spin resonance (ESR) experiments were performed with antiferromagnetic MnO confined within a porous vycor-type glass and within MCM-type channel matrices. A signal from confined MnO shows two components from crystallized and amorphous MnO and depends on the pore topology. Crystallized MnO within a porous glass shows a behavior having many similarities to the bulk. In contrast with the bulk the strong ESR signal due to disordered "surface" spins is observed below the magnetic transition. With the decrease of channel diameter the fraction of amorphous MnO increases while the amount of crystallized MnO decreases. The mutual influence of amorphous and crystalline MnO is observed in the matrices with a larger channel diameter. In the matrices with a smaller channel diameter the ESR signal mainly originates from amorphous MnO and its behavior is typical for the highly disordered magnetic system.Comment: 7 pages pdf file, 5 figure

    Magnetic properties of polypyrrole - coated iron oxide nanoparticles

    Full text link
    Iron oxide nanoparticles were prepared by sol -gel process. Insitu polymerization of pyrrole monomer in the presence of oxygen in iron oxide ethanol suspension resulted in a iron oxide - polypyrrole nanocomposite. The structure and magnetic properties were investigated for varying pyrrole concentrations. The presence of the gamma - iron oxide phase and polypyrrole were confirmed by XRD and FTIR respectively. Agglomeration was found to be comparatively much reduced for the coated samples, as shown by TEM. AC susceptibility measurements confirmed the superparamagnetic behaviour. Numerical simulations performed for an interacting model system are performed to estimate the anisotropy and compare favourably with experimental results.Comment: 11 pages,8 figure

    Magnetic relaxation in finite two-dimensional nanoparticle ensembles

    Full text link
    We study the slow phase of thermally activated magnetic relaxation in finite two-dimensional ensembles of dipolar interacting ferromagnetic nanoparticles whose easy axes of magnetization are perpendicular to the distribution plane. We develop a method to numerically simulate the magnetic relaxation for the case that the smallest heights of the potential barriers between the equilibrium directions of the nanoparticle magnetic moments are much larger than the thermal energy. Within this framework, we analyze in detail the role that the correlations of the nanoparticle magnetic moments and the finite size of the nanoparticle ensemble play in magnetic relaxation.Comment: 21 pages, 4 figure

    Structural and magnetic properties of CoPt mixed clusters

    Get PDF
    In this present work, we report a structural and magnetic study of mixed Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters, avoiding any magnetic interactions between particles. Transmission Electron Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters are about 2nm in diameter and crystallized in the A1 fcc chemically disordered phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters conserve these properties, interaction with matrix atoms being limited to their first atomic layers. Considering that 60% of particle atoms are located at surface, this interactions leads to a drastic change in magnetic properties which were investigated with conventional magnetometry and X-Ray Magnetic Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon as silicides are formed. Magnetic volume of clusters embedded in MgO is close to the crystallized volume determined by GIWAXS experiments. Cluster can be seen as a pure ferromagnetic CoPt crystallized core surrounded by a cluster-matrix mixed shell. The outer shell plays a predominant role in magnetic properties, especially for clusters embedded in niobium which have a blocking temperature 3 times smaller than clusters embedded in MgO
    corecore