406 research outputs found

    No change in plasma tau and serum neurofilament light concentrations in adolescent athletes following sport-related concussion

    Get PDF
    Sport-related concussion (SRC), a mild form of traumatic brain injury (TBI), is a common injury in contact sports. Health care professionals rely on subjective criteria (e.g., symptoms), as there is no objective marker for identification of athletes with SRC. Blood-based biomarkers have shown promise as diagnostic and prognostic tools following TBI and SRC. In the present study, we examined plasma tau and serum NF-L, two biomarkers for neuronal/ axonal injury, concentrations at preseason and following SRC in contact sport athletes (n = 11) using ultrasensitive single molecule array (Simoa) assays. Preseason baseline samples were collected, and post-concussion samples were obtained at 6- and 14-days following injury. We found no difference between baseline, 6-day and 14-day post-concussion concentrations of tau (p = 0.14) or NF-L (p = 0.53). Further, no difference was found between preseason baseline and all post-SRC samples for tau (p = 0.22) or NF-L (p = 0.98). The total number of symptoms reported on the Standardized Assessment of Concussion– 3rd Edition (SCAT3) and associated symptom severity scores increased from preseason to 6-days post-SRC but returned to baseline values at 14-days (p = 0.02 and p = 0.003, respectively). These results suggest that the severity of neuronal injury in this cohort of contact sport athletes with clinical uncomplicated SRC was too low to be detected by tau and NF-L measurements in blood samples obtained at 6- and 14-days post-injury

    Friction reducing ability of a poly-l-lysine and dopamine modified hyaluronan coating for polycaprolactone cartilage resurfacing implants

    Get PDF
    Frictional properties of cartilage resurfacing implants should be sufficiently low to limit damaging of the opposing cartilage during articulation. The present study determines if native lubricious molecule proteoglycan 4 (PRG4) can adsorb onto a layer-by-layer bioinspired coating composed of poly-l-lysine (PLL) and dopamine modified hyaluronic acid (HADN) and thereby can reduce the friction between implant and articular cartilage. An ELISA was developed to quantify the amount of immobilized human recombinant (rh)PRG4 after exposure to the PLL-HADN coating. The effect on lubrication was evaluated by comparing the coefficient of friction (CoF) of bare polycaprolactone (PCL) disks to that of PLL-HADN coated PCL disks while articulated against cartilage using a ring-on-disk geometry and a lubricant solution consisting of native synovial fluid components including rhPRG4. The PLL-HADN coating effectively immobilized rhPRG4. The surface roughness of PCL disks significantly increased while the water contact angle significantly decreased after application of the coating. The average CoF measured during the first minute of bare PCL against cartilage exceeded twice the CoF of the PLL-HADN coated PCL against cartilage. After 60 min, the CoF reached equilibrium values which were still significantly higher for bare PCL compared to coated PCL. The present study demonstrated that PCL can effectively be coated with PLL-HADN. Additionally, this coating reduces the friction between PCL and cartilage when a PRG4-rich lubricant is used, similar to the lubricating surface of native cartilage. This makes PLL-HADN coating a promising application to improve the clinical success of PCL-based cartilage resurfacing implants.</p

    Influences of in-cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5-HAM

    Get PDF
    A diagnostic cloud nucleation scavenging scheme, which determines stratiform cloud scavenging ratios for both aerosol mass and number distributions, based on cloud droplet, and ice crystal number concentrations, is introduced into the ECHAM5-HAM global climate model. This scheme is coupled with a size-dependent in-cloud impaction scavenging parameterization for both cloud droplet-aerosol, and ice crystal-aerosol collisions. The aerosol mass scavenged in stratiform clouds is found to be primarily (&amp;gt;90%) scavenged by cloud nucleation processes for all aerosol species, except for dust (50%). The aerosol number scavenged is primarily (&amp;gt;90%) attributed to impaction. 99% of this impaction scavenging occurs in clouds with temperatures less than 273 K. Sensitivity studies are presented, which compare aerosol concentrations, burdens, and deposition for a variety of in-cloud scavenging approaches: prescribed fractions, a more computationally expensive prognostic aerosol cloud processing treatment, and the new diagnostic scheme, also with modified assumptions about in-cloud impaction and nucleation scavenging. Our results show that while uncertainties in the representation of in-cloud scavenging processes can lead to differences in the range of 20–30% for the predicted annual, global mean aerosol mass burdens, and near to 50% for accumulation mode aerosol number burden, the differences in predicted aerosol mass concentrations can be up to one order of magnitude, particularly for regions of the middle troposphere with temperatures below 273 K where mixed and ice phase clouds exist. Different parameterizations for impaction scavenging changed the predicted global, annual mean number removal attributed to ice clouds by seven-fold, and the global, annual dust mass removal attributed to impaction by two orders of magnitude. Closer agreement with observations of black carbon profiles from aircraft (increases near to one order of magnitude for mixed phase clouds), mid-troposphere &lt;sup&gt;210&lt;/sup&gt;Pb vertical profiles, and the geographic distribution of aerosol optical depth is found for the new diagnostic scavenging scheme compared to the prescribed scavenging fraction scheme of the standard ECHAM5-HAM. The diagnostic and prognostic schemes represent the variability of scavenged fractions particularly for submicron size aerosols, and for mixed and ice phase clouds, and are recommended in preference to the prescribed scavenging fractions method

    Skeletal muscle atrophy and myosteatosis are not related to long-term aneurysmal subarachnoid hemorrhage outcome

    Get PDF
    The prognosis of aneurysmal subarachnoid hemorrhage (aSAH) is highly variable. This study aims to investigate whether skeletal muscle atrophy and myosteatosis are associated with poor outcome after aSAH. In this study, a cohort of 293 consecutive aSAH-patients admitted during a 4-year period was retrospectively analyzed. Cross-sectional muscle measurements were obtained at the level of the third cervical vertebra. Muscle atrophy was defined by a sex-specific cutoff value. Myosteatosis was defined by a BMI-specific cutoff value. Poor neurological outcome was defined as modified Rankin Scale 4–6 at 2 and 6-month follow-up. Patient survival state was checked until January 2021. Generalized estimating equation was performed to assess the effect of muscle atrophy / myosteatosis on poor neurological outcome after aSAH. Cox regression was performed to analyze the impact of muscle atrophy and myosteatosis on overall survival. The study found that myosteatosis was associated with poor neurological condition (WFNS 4–5) at admission after adjusting for covariates (odds ratio [OR] 2.01; 95%CI 1.05,3.83; P = .03). It was not associated with overall survival (P = .89) or with poor neurological outcomes (P = .18) when adjusted for other prognostic markers. Muscle atrophy was not associated with overall survival (P = .58) or neurological outcome (P = .32) after aSAH. In conclusion, myosteatosis was found to be associated with poor physical condition directly after onset of aSAH. Skeletal muscle atrophy and myosteatosis were however irrelevant to outcome in the Western-European aSAH patient. Future studies are needed to validate these finding

    Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Get PDF
    We use a global chemical transport model (GEOS-Chem) to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O<sub>3</sub>, NO<sub>2</sub>, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O<sub>3</sub>, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O<sub>3</sub> from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NO<sub>x</sub> and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O<sub>3</sub> in the upper troposphere by 5&ndash;20 ppbv versus in situ observations and by 1&ndash;4 Dobson Units versus GOME retrievals of tropospheric O<sub>3</sub> columns. A lightning source strength of 6&plusmn;2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO<sub>2</sub> and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NO<sub>x</sub> (biomass burning and soils) and VOCs (biomass burning). The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NO<sub>x</sub> over northern equatorial Africa. These emissions increase lower tropospheric O<sub>3</sub> by 5&ndash;20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O<sub>3</sub> columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4) is evaluated versus observations; GEOS-4 better represents O<sub>3</sub> observations by 5&ndash;15 ppbv, reflecting enhanced convective detrainment in the upper troposphere. Heterogeneous uptake of HNO<sub>3</sub> on aerosols reduces simulated O<sub>3</sub> by 5&ndash;7 ppbv, reducing a model bias versus in situ observations over and downwind of deserts. Exclusion of HO<sub>2</sub> uptake on aerosols increases O<sub>3</sub> by 5 ppbv in biomass burning regions, reducing a model bias versus MOZAIC aircraft measurements

    Gene-Environment Interaction Research and Transgenic Mouse Models of Alzheimer's Disease

    Get PDF
    The etiology of the sporadic form of Alzheimer's disease (AD) remains largely unknown. Recent evidence has suggested that gene-environment interactions (GxE) may play a crucial role in its development and progression. Whereas various susceptibility loci have been identified, like the apolipoprotein E4 allele, these cannot fully explain the increasing prevalence of AD observed with aging. In addition to such genetic risk factors, various environmental factors have been proposed to alter the risk of developing AD as well as to affect the rate of cognitive decline in AD patients. Nevertheless, aside from the independent effects of genetic and environmental risk factors, their synergistic participation in increasing the risk of developing AD has been sparsely investigated, even though evidence points towards such a direction. Advances in the genetic manipulation of mice, modeling various aspects of the AD pathology, have provided an excellent tool to dissect the effects of genes, environment, and their interactions. In this paper we present several environmental factors implicated in the etiology of AD that have been tested in transgenic animal models of the disease. The focus lies on the concept of GxE and its importance in a multifactorial disease like AD. Additionally, possible mediating mechanisms and future challenges are discussed

    The Human Frontal Oculomotor Cortical Areas Contribute Asymmetrically to Motor Planning in a Gap Saccade Task

    Get PDF
    BACKGROUND: Saccadic eye movements are used to rapidly align the fovea with the image of objects of interest in peripheral vision. We have recently shown that in children there is a high preponderance of quick latency but poorly planned saccades that consistently fall short of the target goal. The characteristics of these multiple saccades are consistent with a lack of proper inhibitory control of cortical oculomotor areas on the brainstem saccade generation circuitry. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper, we directly tested this assumption by using single pulse transcranial magnetic stimulation (TMS) to transiently disrupt neuronal activity in the frontal eye fields (FEF) and supplementary eye fields (SEF) in adults performing a gap saccade task. The results showed that the incidence of multiple saccades was increased for ispiversive but not contraversive directions for the right and left FEF, the left SEF, but not for the right SEF. Moreover, this disruption was most substantial during the approximately 50 ms period around the appearance of the peripheral target. A control condition in which the dorsal motor cortex was stimulated demonstrated that this was not due to any non-specific effects of the TMS influencing the spatial distribution of attention. CONCLUSIONS/SIGNIFICANCE: Taken together, the results are consistent with a direction-dependent role of the FEF and left SEF in delaying the release of saccadic eye movements until they have been fully planned

    Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Get PDF
    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year

    SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    Get PDF
    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short-and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.Fil: Snider, G.. Dalhousie University Halifax; CanadáFil: Weagle, C. L.. Dalhousie University Halifax; CanadáFil: Martin, R. V.. Dalhousie University Halifax; Canadá. University of Cambridge; Reino UnidoFil: van Donkelaar, A.. Dalhousie University Halifax; CanadáFil: Conrad, K.. Dalhousie University Halifax; CanadáFil: Cunningham, D.. Dalhousie University Halifax; CanadáFil: Gordon, C.. Dalhousie University Halifax; CanadáFil: Zwicker, M.. Dalhousie University Halifax; CanadáFil: Akoshile, C.. University of Ilorin; NigeriaFil: Artaxo, P.. Governo Do Estado de Sao Paulo; BrasilFil: Anh, N. X.. Vietnam Academy of Science and Technology. Institute of Geophysics; VietnamFil: Brook, J.. University of Toronto; CanadáFil: Dong, J.. Tsinghua University; ChinaFil: Garland, R. M.. North-West University; SudáfricaFil: Greenwald, R.. Rollins School of Public Health; Estados UnidosFil: Griffith, D.. Council for Scientific and Industrial Research; SudáfricaFil: He, K.. Tsinghua University; ChinaFil: Holben, B. N.. NASA Goddard Space Flight Center; Estados UnidosFil: Kahn, R.. NASA Goddard Space Flight Center; Estados UnidosFil: Koren, I.. Weizmann Institute Of Science Israel; IsraelFil: Lagrosas, N.. Manila Observatory, Ateneo de Manila University campus; FilipinasFil: Lestari, P.. Institut Teknologi Bandung; IndonesiaFil: Ma, Z.. Rollins School of Public Health; Estados UnidosFil: Vanderlei Martins, J.. University of Maryland; Estados UnidosFil: Quel, Eduardo Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rudich, Y.. Weizmann Institute Of Science Israel; IsraelFil: Salam, A.. University Of Dhaka; BangladeshFil: Tripathi, S. N.. Indian Institute Of Technology, Kanpur; IndiaFil: Yu, C.. Rollins School of Public Health; Estados UnidosFil: Zhang, Q.. Tsinghua University; ChinaFil: Zhang, Y.. Tsinghua University; ChinaFil: Brauer, M.. University of British Columbia; CanadáFil: Cohen, A.. Health Effects Institute; Estados UnidosFil: Gibson, M. D.. Dalhousie University Halifax; CanadáFil: Liu, Y.. Rollins School of Public Health; Estados Unido

    Heading in soccer increases serum neurofilament light protein and SCAT3 symptom metrics

    Get PDF
    OBJECTIVES: To determine the effect of heading a soccer ball on serum neurofilament light (NF-L) protein, plasma tau protein and symptom metrics including total number of symptoms reported and symptom severity scores on the Standardized Concussion Assessment Tool-3rd edition (SCAT3). METHODS: Eleven male collegiate soccer players were recruited to take part in three experimental conditions including heading, sham and control conditions. Participants were required to perform 40 headers in 20 min in the heading condition, and control 40 soccer balls directed at them with their hands, chest or thigh in the sham condition. No ball contact was made during the control condition. Blood sampling and SCAT3 symptom assessments were completed prior to and 1 hour following conditions. A subset of participants returned 3 weeks following the heading condition for blood sampling. RESULTS: NF-L was elevated at 1 hour (p=0.004) and 1 month (p=0.04) following the heading condition, and at 1 hour (p=0.02) following the control condition. Tau levels remained unchanged following all conditions. The total number of symptoms (TS) and symptom severity (SS) scores from the SCAT3 were both elevated following the heading condition (p=0.01 and p=0.03, respectively). Both TS and SS decreased following sham (p=0.04 and p=0.04) and control conditions (p=0.04 and p=0.04). CONCLUSION: An acute bout of soccer heading is associated with increased NF-L concentrations at 1 hour and 1 month following the session and can lead to symptoms commonly reported following sport-related concussion
    corecore