41 research outputs found

    Stochasticity of Pores Interconnectivity in Li–O2 Batteries and its Impact on the Variations in Electrochemical Performance

    Get PDF
    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpret experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium−oxygen cathode mesostructures obtained from TXM nanocomputed tomography. We apply this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally

    Hyperthermic effects of dissipative structures of magnetic nanoparticles in large alternating magnetic fields

    Get PDF
    Targeted hyperthermia treatment using magnetic nanoparticles is a promising cancer therapy. However, the mechanisms of heat dissipation in the large alternating magnetic field used during such treatment have not been clarified. In this study, we numerically compared the magnetic loss in rotatable nanoparticles in aqueous media with that of non-rotatable nanoparticles anchored to localised structures. In the former, the relaxation loss in superparamagnetic nanoparticles has a secondary maximum because of slow rotation of the magnetic easy axis of each nanoparticle in the large field in addition to the known primary maximum caused by rapid Néel relaxation. Irradiation of rotatable ferromagnetic nanoparticles with a high-frequency axial field generates structures oriented in a longitudinal or planar direction irrespective of the free energy. Consequently, these dissipative structures significantly affect the conditions for maximum hysteresis loss. These findings shed new light on the design of targeted magnetic hyperthermia treatments

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications

    Improved Cervical Cord Lesion Detection with 3D-MP2RAGE Sequence in Patients with Multiple Sclerosis

    No full text
    International audienceSpinal cord lesions have a real diagnostic and prognostic role in multiple sclerosis. Thus, optimizing their detection on MR imaging has become a central issue with direct therapeutic impact. In this study, we compared the 3D-MP2RAGE sequence with the conventional Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) set for cervical cord lesion detection in 28 patients with multiple sclerosis. 3D-MP2RAGE allowed better detection of cervical lesions (+62%) in this population, with better confidence, due to optimized contrast and high spatial resolutio

    Size-dependent properties of magnetic iron oxide nanocrystals

    No full text
    The fine control of iron oxide nanocrystal sizes within the nanometre scale (diameters range from 2.5 to 14 nm) allows us to investigate accurately the size-dependence of their structural and magnetic properties. A study of the growth conditions of these nanocrystals obtained by thermal decomposition of an iron oleate precursor in high-boiling point solvents has been carried out. Both the type of solvent used and the ligand/precursor ratio have been systematically varied, and were found to be the key parameters to control the growth process. The lattice parameters of all the nanocrystals deduced from X-ray diffraction measurements are consistent with a structure of the type Fe(3-x)O(4), i.e. intermediate between magnetite and maghemite, which evolves toward the maghemite structure for the smallest sizes (x = 1/3). The evolution of the magnetic behavior with nanoparticle sizes emphasizes clearly the influence of the surface, especially on the saturation magnetization M(s) and the magneto-crystalline anisotropy K. Dipolar interactions and thermal dependence have been also taken into account in the study on the nanoscale size-effect of magnetic properties
    corecore