146 research outputs found
The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex.
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Sec1/Munc18 (SM) proteins constitute the core of an ancient vesicle fusion machine that diversified into distinct sets that now function in different trafficking steps in eukaryotic cells. Deciphering their precise mode of action has proved challenging. SM proteins are thought to act primarily through one type of SNARE protein, the syntaxins. Despite high structural similarity, however, contrasting binding modes have been found for different SM proteins and syntaxins. Whereas the secretory SM protein Munc18 binds to the ‟closed conformation" of syntaxin 1, the ER-Golgi SM protein Sly1 interacts only with the N-peptide of Sed5. Recent findings, however, indicate that SM proteins might interact simultaneously with both syntaxin regions. In search for a common mechanism, we now reinvestigated the Sly1/Sed5 interaction. We found that individual Sed5 adopts a tight closed conformation. Sly1 binds to both the closed conformation and the N-peptide of Sed5, suggesting that this is the original binding mode of SM proteins and syntaxins. In contrast to Munc18, however, Sly1 facilitates SNARE complex formation by loosening the closed conformation of Sed5
Monitoraggio in area sismica di beni monumentali: tecniche NDT e procedure di verifica
Negli ultimi anni il concetto di vulnerabilità sismica è tristemente entrato a far parte delle
conoscenze anche dei non addetti ai lavori. Infatti, gli eventi sismici che hanno interessato dagli
inizi del ‘900 il territorio Italiano, hanno sistematicamente messo in risalto l’elevata vulnerabilità
sismica del nostro patrimonio edilizio, ivi compresi i beni monumentali, nonché, l’inesistenza di
qualsiasi attività di programmazione della manutenzione periodica ordinaria e straordinaria delle
strutture sismo-resistenti, che garantiscono nel tempo la conservazione delle loro capacità di
risposta alle perturbazioni esterne.Il progetto PON sul Monitoraggio in Area Sismica di SIstemi MOnumentali nasce con la
prerogativa di produrre uno strumento dedicato alla tutela di strutture a valenza storico – artistica,
attraverso un percorso di catalogazione, di analisi del bene inteso come elemento costituito da
elementi resistenti e da materiali, di studio del sito dove la struttura è ubicata e di attività di
monitoraggio
Application of advanced production metrology for quality improvements in biomedical engineering - analysis and evaluation of surface structures of dental implants
Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth
The overexpression of the protein tyrosine kinase, Focal adhesion kinase (FAK), in endothelial cells has implicated its requirement in angiogenesis and tumour growth, but how pericyte FAK regulates tumour angiogenesis is unknown. We show that pericyte FAK regulates tumour growth and angiogenesis in multiple mouse models of melanoma, lung carcinoma and pancreatic B-cell insulinoma and provide evidence that loss of pericyte FAK enhances Gas6-stimulated phosphorylation of the receptor tyrosine kinase, Axl with an upregulation of Cyr61, driving enhanced tumour growth. We further show that pericyte derived Cyr61 instructs tumour cells to elevate expression of the proangiogenic/protumourigenic transmembrane receptor Tissue Factor. Finally, in human melanoma we show that when 50% or more tumour blood vessels are pericyte-FAK negative, melanoma patients are stratified into those with increased tumour size, enhanced blood vessel density and metastasis. Overall our data uncover a previously unknown mechanism of tumour growth by pericytes that is controlled by pericyte FAK.</p
Health-related quality of life in children with chronic immune thrombocytopenia in China
Impact of vaccination status on outcome of patients with COVID‐19 and acute ischemic stroke undergoing mechanical thrombectomy
Background
Data on impact of COVID‐19 vaccination and outcomes of patients with COVID‐19 and acute ischemic stroke undergoing mechanical thrombectomy are scarce. Addressing this subject, we report our multicenter experience.
Methods and Results
This was a retrospective analysis of patients with COVID‐19 and known vaccination status treated with mechanical thrombectomy for acute ischemic stroke at 20 tertiary care centers between January 2020 and January 2023. Baseline demographics, angiographic outcome, and clinical outcome evaluated by the modified Rankin Scale score at discharge were noted. A multivariate analysis was conducted to test whether these variables were associated with an unfavorable outcome, defined as modified Rankin Scale score >3. A total of 137 patients with acute ischemic stroke (48 vaccinated and 89 unvaccinated) with acute or subsided COVID‐19 infection who underwent mechanical thrombectomy attributable to vessel occlusion were included in the study. Angiographic outcomes between vaccinated and unvaccinated patients were similar (modified Thrombolysis in Cerebral Infarction ≥2b: 85.4% in vaccinated patients versus 86.5% in unvaccinated patients; P=0.859). The rate of functional independence (modified Rankin Scale score, ≤2) was 23.3% in the vaccinated group and 20.9% in the unvaccinated group (P=0.763). The mortality rate was 30% in both groups. In the multivariable analysis, vaccination status was not a significant predictor for an unfavorable outcome (P=0.957). However, acute COVID‐19 infection remained significant (odds ratio, 1.197 [95% CI, 1.007–1.417]; P=0.041).
Conclusions
Our study demonstrated no impact of COVID‐19 vaccination on angiographic or clinical outcome of COVID‐19–positive patients with acute ischemic stroke undergoing mechanical thrombectomy, whereas worsening attributable to COVID‐19 was confirmed
METhodological RadiomICs Score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII
Purpose: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. Methods: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. Result: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. Conclusion: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. Critical relevance statement: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. Key points: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score (https://metricsscore.github.io/metrics/METRICS.html) and a repository created to collect feedback from the radiomics community (https://github.com/metricsscore/metrics). Graphical Abstract: [Figure not available: see fulltext.
Oncofetal reprogramming drives phenotypic plasticity in WNT-dependent colorectal cancer
Targeting cancer stem cells (CSCs) is crucial for effective cancer treatment, yet resistance mechanisms to LGR5(+) CSC depletion in WNT-driven colorectal cancer (CRC) remain elusive. In the present study, we revealed that mutant intestinal stem cells (SCs) depart from their canonical identity, traversing a dynamic phenotypic spectrum. This enhanced plasticity is initiated by oncofetal (OnF) reprogramming, driven by YAP and AP-1, with subsequent AP-1 hyperactivation promoting lineage infidelity. The retinoid X receptor serves as a gatekeeper of OnF reprogramming and its deregulation after adenomatous polyposis coli (APC) loss of function establishes an OnF ‘memory’ sustained by YAP and AP-1. Notably, the clinical significance of OnF and LGR5(+) states in isolation is constrained by their functional redundancy. Although the canonical LGR5(+) state is sensitive to the FOLFIRI regimen, an active OnF program correlates with resistance, supporting its role in driving drug-tolerant states. Targeting this program in combination with the current standard of care is pivotal for achieving effective and durable CRC treatment
RAS-Mutant Leukaemia Stem Cells Drive Clinical Resistance to Venetoclax
Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1-6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients
- …
