229 research outputs found

    Progesterone Signaling Inhibits Cervical Carcinogenesis in Mice

    Get PDF
    Human papillomavirus is the main cause of cervical cancer, yet other nonviral cofactors are also required for the disease. The uterine cervix is a hormone-responsive tissue, and female hormones have been implicated in cervical carcinogenesis. A transgenic mouse model expressing human papillomavirus oncogenes E6 and/or E7has proven useful to study a mechanism of hormone actions in the context of this common malignancy. Estrogen and estrogen receptor ? are required for the development of cervical cancer in this mouse model. Estrogen receptor ? is known to up-regulate expression of the progesterone receptor, which, on activation by its ligands, either promotes or inhibits carcinogenesis, depending on the tissue context. Here, we report that progesterone receptor inhibits cervical and vaginal epithelial cell proliferation in a ligand-dependent manner. We also report that synthetic progestin medroxyprogesterone acetate promotes regression of cancers and precancerous lesions in the female lower reproductive tracts (ie, cervix and vagina) in the human papillomavirus transgenic mouse model. Our results provide the first experimental evidence that supports the hypothesis that progesterone signaling is inhibitory for cervical carcinogenesis in vivo

    Steroid receptor coactivator 2 is required for female fertility and mammary morphogenesis: insights from the mouse, relevance to the human

    Get PDF
    Although the importance of the progesterone receptor (PR) to female reproductive and mammary gland biology is firmly established, the coregulators selectively co-opted by PR in these systems have not been clearly delineated. A selective gene-knockout approach applied to the mouse, which abrogates gene function only in cell types that express PR, recently disclosed steroid receptor coactivator 2 (SRC-2, also known as TIF-2 or GRIP-1) to be an indispensable coregulator for uterine and mammary gland responses that require progesterone. Uterine cells positive for PR (but devoid of SRC-2) were found to be incapable of facilitating embryo implantation, a necessary first step toward the establishment of the materno-fetal interface. Importantly, such an implantation defect is not exhibited by knockouts for SRC-1 or SRC-3, underscoring the unique coregulator importance of SRC-2 in peri-implantation biology. Moreover, despite normal levels of PR, SRC-1 and SRC-3, progesterone-dependent branching morphogenesis and alveologenesis fails to occur in the murine mammary gland in the absence of SRC-2, thereby establishing a critical coregulator role for SRC-2 in signaling cascades that mediate progesterone-induced mammary epithelial proliferation. Finally, the recent detection of SRC-2 in the human endometrium and breast suggests that this coregulator may represent a new clinical target for the future management of female reproductive health and/or breast cancer

    The Synergistic Effect of Conditional Pten Loss and Oncogenic K-ras Mutation on Endometrial Cancer Development Occurs via Decreased Progesterone Receptor Action

    Get PDF
    Endometrial cancer is the most common gynecological cancer. Estrogen-dependent endometrioid carcinoma is the most common type of endometrial cancer, and alterations in the expression of PTEN and K-ras have been associated with this disease. To study the roles of Pten and K-ras in endometrial cancer, we generated Pten ablation and oncogenic K-ras mutation in progesterone receptor positive cells (PRcre/+Ptenf/f K-rasG12D). Double mutant mice dramatically accelerated the development of endometrial cancer compared to a single mutation of either gene. Histological analysis showed that all of the 1-month old double mutant female mice developed endometrial cancer with myometrial invasion. The expression of PR was downregulated in double mutant mice compared to a single mutation of either gene which resulted in decreased suppression of estrogen signaling. Therefore, these results suggest a synergistic effect of dysregulation of the Pten and K-ras signaling pathways during endometrial tumorigenesis

    COUP-TFII Mediates Progesterone Regulation of Uterine Implantation by Controlling ER Activity

    Get PDF
    Progesterone and estrogen are critical regulators of uterine receptivity. To facilitate uterine remodeling for embryo attachment, estrogen activity in the uterine epithelia is attenuated by progesterone; however, the molecular mechanism by which this occurs is poorly defined. COUP-TFII (chicken ovalbumin upstream promoter transcription factor II; also known as NR2F2), a member of the nuclear receptor superfamily, is highly expressed in the uterine stroma and its expression is regulated by the progesterone–Indian hedgehog–Patched signaling axis that emanates from the epithelium. To further assess COUP-TFII uterine function, a conditional COUP-TFII knockout mouse was generated. This mutant mouse is infertile due to implantation failure, in which both embryo attachment and uterine decidualization are impaired. Using this animal model, we have identified a novel genetic pathway in which BMP2 lies downstream of COUP-TFII. Epithelial progesterone-induced Indian hedgehog regulates stromal COUP-TFII, which in turn controls BMP2 to allow decidualization to manifest in vivo. Interestingly, enhanced epithelial estrogen activity, which impedes maturation of the receptive uterus, was clearly observed in the absence of stromal-derived COUP-TFII. This finding is consistent with the notion that progesterone exerts its control of implantation through uterine epithelial-stromal cross-talk and reveals that stromal-derived COUP-TFII is an essential mediator of this complex cross-communication pathway. This finding also provides a new signaling paradigm for steroid hormone regulation in female reproductive biology, with attendant implications for furthering our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in such human reproductive disorders as endometriosis and endometrial cancer

    Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis.

    Get PDF
    During early pregnancy in the mouse, nidatory estrogen (E2) stimulates endometrial receptivity by activating a network of signaling pathways that is not yet fully characterized. Here, we report that bone morphogenetic proteins (BMPs) control endometrial receptivity via a conserved activin receptor type 2 A (ACVR2A) and SMAD1/5 signaling pathway. Mice were generated to contain single or double conditional deletion of SMAD1/5 and ACVR2A/ACVR2B receptors using progesterone receptor (PR)-cre. Female mice with SMAD1/5 deletion display endometrial defects that result in the development of cystic endometrial glands, a hyperproliferative endometrial epithelium during the window of implantation, and impaired apicobasal transformation that prevents embryo implantation and leads to infertility. Analysis of Acvr2a-PRcre and Acvr2b-PRcre pregnant mice determined that BMP signaling occurs via ACVR2A and that ACVR2B is dispensable during embryo implantation. Therefore, BMPs signal through a conserved endometrial ACVR2A/SMAD1/5 pathway that promotes endometrial receptivity during embryo implantation

    Pten and Dicer1 loss in the mouse uterus causes poorly-differentiated endometrial adenocarcinoma

    Get PDF
    Endometrial cancer remains the most common gynecological malignancy in the United States. While the loss of the tumor suppressor, PTEN (phosphatase and tensin homolog), is well studied in endometrial cancer, recent studies suggest that DICER1, the endoribonuclease responsible for miRNA genesis, also plays a significant role in endometrial adenocarcinoma. Conditional uterine deletion of Dicer1 and Pten in mice resulted in poorly differentiated endometrial adenocarcinomas, which expressed Napsin A and HNF1B (hepatocyte nuclear factor 1 homeobox B), markers of clear-cell adenocarcinoma. Adenocarcinomas were hormone-independent. Treatment with progesterone did not mitigate poorly differentiated adenocarcinoma, nor did it affect adnexal metastasis. Transcriptomic analyses of DICER1 deleted uteri or Ishikawa cells revealed unique transcriptomic profiles and global miRNA downregulation. Computational integration of miRNA with mRNA targets revealed deregulated let-7 and miR-16 target genes, similar to published human DICER1-mutant endometrial cancers from TCGA (The Cancer Genome Atlas). Similar to human endometrial cancers, tumors exhibited dysregulation of ephrin-receptor signaling and transforming growth factor-beta signaling pathways. LIM kinase 2 (LIMK2), an essential molecule in p21 signal transduction, was significantly upregulated and represents a novel mechanism for hormone-independent pathogenesis of endometrial adenocarcinoma. This preclinical mouse model represents the first genetically engineered mouse model of poorly differentiated endometrial adenocarcinoma

    The NR2F2-HAND2 signaling axis regulates progesterone actions in the uterus at early pregnancy

    Get PDF
    Endometrial function is dependent on a tight crosstalk between the epithelial and stromal cells of the endometrium. This communication is critical to ensure a fertile uterus and relies on progesterone and estrogen signaling to prepare a receptive uterus for embryo implantation in early pregnancy. One of the key mediators of this crosstalk is the orphan nuclear receptor NR2F2, which regulates uterine epithelial receptivity and stromal cell differentiation. In order to determine the molecular mechanism regulated by NR2F2, RNAseq analysis was conducted on the uterus of PgrCre;Nr2f2f/f mice at Day 3.5 of pregnancy. This transcriptomic analysis demonstrated Nr2f2 ablation in Pgr-expressing cells leads to a reduction of Hand2 expression, increased levels of Hand2 downstream effectors Fgf1 and Fgf18, and a transcriptome manifesting suppressed progesterone signaling with an altered immune baseline. ChIPseq analysis conducted on the Day 3.5 pregnant mouse uterus for NR2F2 demonstrated the majority of NR2F2 occupies genomic regions that have H3K27ac and H3K4me1 histone modifications, including the loci of major uterine transcription regulators Hand2, Egr1, and Zbtb16. Furthermore, functional analysis of an NR2F2 occupying site that is conserved between human and mouse was capable to enhance endogenous HAND2 mRNA expression with the CRISPR activator in human endometrial stroma cells. These data establish the NR2F2 dependent regulation of Hand2 in the stroma and identify a cis-acting element for this action. In summary, our findings reveal a role of the NR2F2-HAND2 regulatory axis that determines the uterine transcriptomic pattern in preparation for the endometrial receptivity
    corecore