36 research outputs found

    Computer-Generated Ovaries to Assist Follicle Counting Experiments

    Get PDF
    Precise estimation of the number of follicles in ovaries is of key importance in the field of reproductive biology, both from a developmental point of view, where follicle numbers are determined at specific time points, as well as from a therapeutic perspective, determining the adverse effects of environmental toxins and cancer chemotherapeutics on the reproductive system. The two main factors affecting follicle number estimates are the sampling method and the variation in follicle numbers within animals of the same strain, due to biological variability. This study aims at assessing the effect of these two factors, when estimating ovarian follicle numbers of neonatal mice. We developed computer algorithms, which generate models of neonatal mouse ovaries (simulated ovaries), with characteristics derived from experimental measurements already available in the published literature. The simulated ovaries are used to reproduce in-silico counting experiments based on unbiased stereological techniques; the proposed approach provides the necessary number of ovaries and sampling frequency to be used in the experiments given a specific biological variability and a desirable degree of accuracy. The simulated ovary is a novel, versatile tool which can be used in the planning phase of experiments to estimate the expected number of animals and workload, ensuring appropriate statistical power of the resulting measurements. Moreover, the idea of the simulated ovary can be applied to other organs made up of large numbers of individual functional units

    High STEAP1 expression is associated with improved outcome of Ewing's sarcoma patients

    Get PDF
    Background Ewing's sarcoma (ES) is the second most common bone or soft-tissue sarcoma in childhood and adolescence and features a high propensity to metastasize. The six-transmembrane epithelial antigen of the prostate 1 (STEAP1) is a membrane-bound mesenchymal stem cell marker highly expressed in ES. Here, we investigated the role of STEAP1 as an immunohistological marker for outcome prediction in patients with ES. Patients and methods Membranous STEAP1 immunoreactivity was analyzed using immunohistochemistry in 114 primary pre-chemotherapy ES of patients diagnosed from 1983 to 2010 and compared with clinical parameters and patient outcome. Median follow-up was 3.85 years (range 0.43-17.51). Results A total of 62.3% of the ES samples displayed detectable STEAP1 expression with predominant localization of the protein at the plasma membrane. High membranous STEAP1 immunoreactivity was found in 53.5%, which correlated with better overall survival (P=0.021). Accordingly, no or low membranous STEAP1 expression was identified as an independent risk factor in multivariate analysis (hazard ratio 2.65, P=0.036). Conclusion High membranous STEAP1 expression predicts improved outcome and may help to define a specific subgroup of ES patients, who might benefit from adapted therapy regimen

    Transcriptome profiling of sheep granulosa cells and oocytes during early follicular development obtained by Laser Capture Microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Successful achievement of early folliculogenesis is crucial for female reproductive function. The process is finely regulated by cell-cell interactions and by the coordinated expression of genes in both the oocyte and in granulosa cells. Despite many studies, little is known about the cell-specific gene expression driving early folliculogenesis. The very small size of these follicles and the mixture of types of follicles within the developing ovary make the experimental study of isolated follicular components very difficult.</p> <p>The recently developed laser capture microdissection (LCM) technique coupled with microarray experiments is a promising way to address the molecular profile of pure cell populations. However, one main challenge was to preserve the RNA quality during the isolation of single cells or groups of cells and also to obtain sufficient amounts of RNA.</p> <p>Using a new LCM method, we describe here the separate expression profiles of oocytes and follicular cells during the first stages of sheep folliculogenesis.</p> <p>Results</p> <p>We developed a new tissue fixation protocol ensuring efficient single cell capture and RNA integrity during the microdissection procedure. Enrichment in specific cell types was controlled by qRT-PCR analysis of known genes: six oocyte-specific genes (<it>SOHLH2</it>, <it>MAEL</it>, <it>MATER</it>, <it>VASA</it>, <it>GDF9</it>, <it>BMP15</it>) and three granulosa cell-specific genes (<it>KL</it>, <it>GATA4</it>, <it>AMH</it>).</p> <p>A global gene expression profile for each follicular compartment during early developmental stages was identified here for the first time, using a bovine Affymetrix chip. Most notably, the granulosa cell dataset is unique to date. The comparison of oocyte vs. follicular cell transcriptomes revealed 1050 transcripts specific to the granulosa cell and 759 specific to the oocyte.</p> <p>Functional analyses allowed the characterization of the three main cellular events involved in early folliculogenesis and confirmed the relevance and potential of LCM-derived RNA.</p> <p>Conclusions</p> <p>The ovary is a complex mixture of different cell types. Distinct cell populations need therefore to be analyzed for a better understanding of their potential interactions. LCM and microarray analysis allowed us to identify novel gene expression patterns in follicular cells at different stages and in oocyte populations.</p

    Cell Lineage Analysis of the Mammalian Female Germline

    Get PDF
    Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote). We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development

    Large-Scale Phenotyping of an Accurate Genetic Mouse Model of JNCL Identifies Novel Early Pathology Outside the Central Nervous System

    Get PDF
    Cln3Δex7/8 mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3Δex7/8 mice. Homozygous Cln3Δex7/8 mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10–14 weeks of age. Homozygous Cln3Δex7/8 mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12–13 week old homozygous Cln3Δex7/8mice, which were also seen to a lesser extent in heterozygous Cln3Δex7/8 mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15–16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3Δex7/8 mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3Δex7/8 neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3Δex7/8 mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3Δex7/8 mice that merit further study for JNCL biomarker development

    Single-cell, whole-embryo phenotyping of mammalian developmental disorders

    Get PDF
    Mouse models are a critical tool for studying human diseases, particularly developmental disorders. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution

    Fetal cyclophosphamide exposure induces testicular cancer and reduced spermatogenesis and ovarian follicle numbers in mice

    Get PDF
    <div><p>Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. <i>In utero</i> exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the <i>in utero</i> CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents <i>in utero</i> may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.</p></div

    Inferring Biological Mechanisms from Spatial Analysis: Prediction of a Local Inhibitor in the Ovary

    Get PDF
    Female mammals are born with a lifetime's supply of oocytes individually enveloped in flattened epithelial cells to form primordial follicles. It is not clear how sufficient primordial follicles are maintained to sustain the reproductive lifespan, while providing an adequate supply of mature oocytes for ovulation. Locally produced growth factors are thought to be critical regulators of early follicle growth, but knowledge of their identity and source remains incomplete. Here, we have used a simple approach of spatial analysis of structures in histological tissue sections to identify likely sources of such regulatory molecules, narrowing the field for future screening for candidate growth factors or antagonists. We have quantified the relative spatial positions of primordial (resting) follicles and growing follicles in mice on days 4, 8, and 12 after birth, and calculated interfollicular distances. Follicles were significantly less likely to have started growing if they had 1 or more primordial follicles close by (within 10 μm), predicting that primordial follicles inhibit each other. This approach allows us to hypothesize that primordial follicles produce a diffusible inhibitor that prevents neighboring primordial follicles from growing. Such an approach has wide applicability within many branches of developmental and cell biology for studying spatial signaling within tissues and cells
    corecore