2,508 research outputs found
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux
We report results from 120 hours of livetime with the Goldstone Lunar
Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10
ns microwave pulses from the lunar regolith, appearing in coincidence at two
large radio telescopes separated by 22 km and linked by optical fiber. Such
pulses would arise from subsurface electromagnetic cascades induced by
interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are
yet seen, and the implied limits constrain several current models for
ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4;
in final PRL revie
Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
© 2014 Rougerie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Barcoding Bugs: DNA-Based Identification of the True Bugs (Insecta: Hemiptera: Heteroptera)
oxidase I (COI) gene, has been shown to provide an efficient method for the identification of species in a wide range of animal taxa. In order to assess the effectiveness of barcodes in the discrimination of Heteroptera, we examined 344 species belonging to 178 genera, drawn from specimens in the Canadian National Collection of Insects.Analysis of the COI gene revealed less than 2% intra-specific divergence in 90% of the taxa examined, while minimum interspecific distances exceeded 3% in 77% of congeneric species pairs. Instances where barcodes fail to distinguish species represented clusters of morphologically similar species, except one case of barcode identity between species in different genera. Several instances of deep intraspecific divergence were detected suggesting possible cryptic species.Although this analysis encompasses 0.8% of the described global fauna, our results indicate that DNA barcodes will aid the identification of Heteroptera. This advance will be useful in pest management, regulatory and environmental applications and will also reveal species that require further taxonomic research
Observations of Microwave Continuum Emission from Air Shower Plasmas
We investigate a possible new technique for microwave measurements of
ultra-high energy cosmic ray (UHECR) extensive air showers which relies on
detection of expected continuum radiation in the microwave range, caused by
free-electron collisions with neutrals in the tenuous plasma left after the
passage of the shower. We performed an initial experiment at the AWA (Argonne
Wakefield Accelerator) laboratory in 2003 and measured broadband microwave
emission from air ionized via high energy electrons and photons. A follow-up
experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004
confirmed the major features of the previous AWA observations with better
precision and made additional measurements relevant to the calorimetric
capabilities of the method. Prompted by these results we built a prototype
detector using satellite television technology, and have made measurements
indicating possible detection of cosmic ray extensive air showers. The method,
if confirmed by experiments now in progress, could provide a high-duty cycle
complement to current nitrogen fluorescence observations of UHECR, which are
limited to dark, clear nights. By contrast, decimeter microwave observations
can be made both night and day, in clear or cloudy weather, or even in the
presence of moderate precipitation.Comment: 15 pages, 13 figure
Magnetic phase diagram of cubic perovskites SrMn_1-xFe_xO_3
We combine the results of magnetic and transport measurements with Mossbauer
spectroscopy and room-temperature diffraction data to construct the magnetic
phase diagram of the new family of cubic perovskite manganites SrMn_1-xFe_xO_3.
We have found antiferromagnetic ordering for lightly and heavily Fe-substituted
material, while intermediate substitution leads to spin-glass behavior. Near
the SrMn_0.5Fe_0.5O_3 composition these two types of ordering are found to
coexist and affect one another. The spin glass behavior may be caused by
competing ferro- and antiferromagnetic interactions among Mn^4+ and observed
Fe^3+ and Fe^5+ ions.Comment: 8 pages, 10 figures, revtex, accepted to Phys. Rev.
First Observation of the Rare Decay Mode K-long -> e+ e-
In an experiment designed to search for and study very rare two-body decay
modes of the K-long, we have observed four examples of the decay K-long -> e+
e-, where the expected background is 0.17+-0.10 events. This observation
translates into a branching fraction of 8.7^{+5.7}_{-4.1} X 10^{-12},
consistent with recent theoretical predictions. This result represents by far
the smallest branching fraction yet measured in particle physics.Comment: 9 pages, 3 figure
Phase behaviour of charged colloidal sphere dispersions with added polymer chains
We study the stability of mixtures of highly screened repulsive charged
spheres and non-adsorbing ideal polymer chains in a common solvent using free
volume theory. The effective interaction between charged colloids in an aqueous
salt solution is described by a screened-Coulomb pair potential, which
supplements the pure hard-sphere interaction. The ideal polymer chains are
treated as spheres that are excluded from the colloids by a hard-core
interaction, whereas the interaction between two ideal chains is set to zero.
In addition, we investigate the phase behaviour of charged colloid-polymer
mixtures in computer simulations, using the two-body (Asakura-Oosawa pair
potential) approximation to the effective one-component Hamiltonian of the
charged colloids. Both our results obtained from simulations and from free
volume theory show similar trends. We find that the screened-Coulomb repulsion
counteracts the effect of the effective polymer-mediated attraction. For
mixtures of small polymers and relatively large charged colloidal spheres, the
fluid-crystal transition shifts to significantly larger polymer concentrations
with increasing range of the screened-Coulomb repulsion. For relatively large
polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting
fluid-fluid binodal is only slightly shifted towards larger polymer
concentrations upon increasing the range of the screened-Coulomb repulsion. In
conclusion, our results show that the miscibility of dispersions containing
charged colloids and neutral non-adsorbing polymers increases, upon increasing
the range of the screened-Coulomb repulsion, or upon lowering the salt
concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens.
Matte
Extreme Food-Plant Specialisation in Megabombus Bumblebees as a Product of Long Tongues Combined with Short Nesting Seasons
© 2015 Huang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article
Recommended from our members
On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets
The first lab-on-chip system for picoliter droplet generation and RNA isolation, followed by reverse transcription, and PCR amplification with real-time fluorescence detection in the trapped droplets has been developed. The system utilized a shearing T-junction in a fused silica device to generate a stream of monodisperse picoliter-scale droplets that were isolated from the microfluidic channel walls and each other by the oil phase carrier. An off-chip valving system stopped the droplets on-chip, allowing thermal cycling for reverse transcription and subsequent PCR amplification without droplet motion. This combination of the established real-time reverse transcription-PCR assay with digital microfluidics is ideal for isolating single-copy RNA and virions from a complex environment, and will be useful in viral discovery and gene-profiling applications
- …