2,434 research outputs found

    On the Commutative Equivalence of Context-Free Languages

    Get PDF
    The problem of the commutative equivalence of context-free and regular languages is studied. In particular conditions ensuring that a context-free language of exponential growth is commutatively equivalent with a regular language are investigated

    Quantum measurement of a mesoscopic spin ensemble

    Full text link
    We describe a method for precise estimation of the polarization of a mesoscopic spin ensemble by using its coupling to a single two-level system. Our approach requires a minimal number of measurements on the two-level system for a given measurement precision. We consider the application of this method to the case of nuclear spin ensemble defined by a single electron-charged quantum dot: we show that decreasing the electron spin dephasing due to nuclei and increasing the fidelity of nuclear-spin-based quantum memory could be within the reach of present day experiments.Comment: 8 pages, 2 figures; minor changes, published versio

    Building on strategic elearning initiatives of hybrid graduate education a case study approach: MHEI-ME Erasmus+ Project

    Get PDF
    Online courses are gaining popularity because they provide extensive and varied course material, information, knowledge, and skills, whilst also creating an effective educational online community. This research adopts a case study approach to focus on the teaching method and the manner in which a strategic commitment to eLearning provides scope for the development and implementation of top quality educational online fully accredited programs. Entrepreneurship focuses on developing businesses that add value and create wealth and prosperity in our societies. Therefore, entrepreneurship is a key area of learning for graduate students seeking to set up and operate their own SME organizations. It can serve as a benchmark for the teaching of other graduate subjects that require a sound correlation for the correlation of concepts and theories to the challenging complexities of the real world. The program was developed on the basis of the implementation of a state-of-the-art eLearning platform that allowed for a combination of varied self-learning and collaborative learning elements and activities within a single platform. This enabled students to access the online content material efficiently and effectively. It allows for the development of a program based on the flipped classroom teaching methodology. The underlying concept of the flipped classroom methodology is that effective eLearning should comprise both synchronous and asynchronous learning activities. This combination of self-learning and collaborative learning calls for careful planning by the tutor to ensure that the learning objectives are clearly defined for each activity and that the relevant deliverables are monitored. The content material for each subject course module was designed, developed, produced, and presented by the different project partners in a holistic manner structured to motivate participants to learn. The results of our analysis have shown that students were able to learn, discuss their projects, and cooperate during an online course in an effective and participant-focused manner with their tutors. The feedback given highlights the importance of ongoing communications between students and the tutors who often need to act as mentors to retain student engagement. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    The Crustal Rigidity of a Neutron Star, and Implications for PSR 1828-11 and other Precession Candidates

    Get PDF
    We calculate the crustal rigidity parameter, b, of a neutron star (NS), and show that b is a factor 40 smaller than the standard estimate due to Baym & Pines (1971). For a NS with a relaxed crust, the NS's free-precession frequency is directly proportional to b. We apply our result for b to PSR 1828-11, a 2.5 Hz pulsar that appears to be precessing with period 511 d. Assuming this 511-d period is set by crustal rigidity, we show that this NS's crust is not relaxed, and that its reference spin (roughly, the spin for which the crust is most relaxed) is 40 Hz, and that the average spindown strain in the crust is 5 \times 10^{-5}. We also briefly describe the implications of our b calculation for other well-known precession candidates.Comment: 44 pages, 10 figures, submitted to Ap

    Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy

    Get PDF
    Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents)

    Time-optimal rotation of a spin 1/2: application to the NV center spin in diamond

    Full text link
    We study the applicability of the time optimal bang-bang control designed for spin-1/2 [U. Boscain and P. Mason, J. Math. Phys. {\bf 47}, 062101 (2006)] to the rotation of the electron spin of a nitrogen-vacancy (NV) center in diamond. The spin of the NV center is a three-level system, with two levels forming a relevant qubit subspace where the time-varying magnetic control field performs rotation, and the third level being idle. We find that the bang-bang control protocol decreases the rotation time by 20--25% in comparison with the traditional oscillating sinusoidal driving. We also find that for most values of the bias field the leakage to the idle level is very small, so that the NV center is a suitable testbed for experimental study of the time-optimal protocols. For some special values of the bias field, however, the unwanted leakage is greatly increased. We demonstrate that this is caused by the resonance with higher-order Fourier harmonics of the bang-bang driving field.Comment: 6 pages, 4 figure

    Symbolic Dynamics Analysis of the Lorenz Equations

    Full text link
    Recent progress of symbolic dynamics of one- and especially two-dimensional maps has enabled us to construct symbolic dynamics for systems of ordinary differential equations (ODEs). Numerical study under the guidance of symbolic dynamics is capable to yield global results on chaotic and periodic regimes in systems of dissipative ODEs which cannot be obtained neither by purely analytical means nor by numerical work alone. By constructing symbolic dynamics of 1D and 2D maps from the Poincare sections all unstable periodic orbits up to a given length at a fixed parameter set may be located and all stable periodic orbits up to a given length may be found in a wide parameter range. This knowledge, in turn, tells much about the nature of the chaotic limits. Applied to the Lorenz equations, this approach has led to a nomenclature, i.e., absolute periods and symbolic names, of stable and unstable periodic orbits for an autonomous system. Symmetry breakings and restorations as well as coexistence of different regimes are also analyzed by using symbolic dynamics.Comment: 35 pages, LaTeX, 13 Postscript figures, uses psfig.tex. The revision concerns a bug at the end of hlzfig12.ps which prevented the printing of the whole .ps file from page 2

    Quantum control theory for coupled 2-electron dynamics in quantum dots

    Full text link
    We investigate optimal control strategies for state to state transitions in a model of a quantum dot molecule containing two active strongly interacting electrons. The Schrodinger equation is solved nonperturbatively in conjunction with several quantum control strategies. This results in optimized electric pulses in the THz regime which can populate combinations of states with very short transition times. The speedup compared to intuitively constructed pulses is an order of magnitude. We furthermore make use of optimized pulse control in the simulation of an experimental preparation of the molecular quantum dot system. It is shown that exclusive population of certain excited states leads to a complete suppression of spin dephasing, as was indicated in Nepstad et al. [Phys. Rev. B 77, 125315 (2008)].Comment: 24 pages, 9 figure

    Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls

    Get PDF
    Dynamically corrected gates were recently introduced [Khodjasteh and Viola, Phys. Rev. Lett. 102, 080501 (2009)] as a tool to achieve decoherence-protected quantum gates based on open-loop Hamiltonian engineering. Here, we further expand the framework of dynamical quantum error correction, with emphasis on elucidating under what conditions decoherence suppression can be ensured while performing a generic target quantum gate, using only available bounded-strength control resources. Explicit constructions for physically relevant error models are detailed, including arbitrary linear decoherence and pure dephasing on qubits. The effectiveness of dynamically corrected gates in an illustrative non-Markovian spin-bath setting is investigated numerically, confirming the expected fidelity performance in a wide parameter range. Robutness against a class of systematic control errors is automatically incorporated in the perturbative error regime.Comment: 21 pages, 7 figures (errors fixed, figures added, text updated

    CaloCube: a novel calorimeter for high-energy cosmic rays in space

    Get PDF
    In order to extend the direct observation of high-energy cosmic rays up to the PeV region, highly performing calorimeters with large geometrical acceptance and high energy resolution are required. Within the constraint of the total mass of the apparatus, crucial for a space mission, the calorimeters must be optimized with respect to their geometrical acceptance, granularity and absorption depth. CaloCube is a homogeneous calorimeter with cubic geometry, to maximise the acceptance being sensitive to particles from every direction in space; granularity is obtained by relying on small cubic scintillating crystals as active elements. Different scintillating materials have been studied. The crystal sizes and spacing among them have been optimized with respect to the energy resolution. A prototype, based on CsI(Tl) cubic crystals, has been constructed and tested with particle beams. Some results of tests with different beams at CERN are presented.Comment: Seven pages, seven pictures. Proceedings of INSTR17 Novosibirs
    • 

    corecore